Vai al contenuto principale della pagina

Biologically Inspired Techniques in Many Criteria Decision-Making : Proceedings of BITMDM 2024 / / edited by Satchidananda Dehuri, Sujata Dash, Ruppa K. Thulasiram, Rohen H. Singh, Margarita Favorskaya



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Biologically Inspired Techniques in Many Criteria Decision-Making : Proceedings of BITMDM 2024 / / edited by Satchidananda Dehuri, Sujata Dash, Ruppa K. Thulasiram, Rohen H. Singh, Margarita Favorskaya Visualizza cluster
Pubblicazione: Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Edizione: 1st ed. 2025.
Descrizione fisica: 1 online resource (XIV, 479 p. 223 illus., 187 illus. in color.)
Disciplina: 006.3
Soggetto topico: Computational intelligence
Artificial intelligence
Automatic control
Robotics
Automation
Computational Intelligence
Artificial Intelligence
Control, Robotics, Automation
Persona (resp. second.): DehuriSatchidananda
DashSujata
ThulasiramRuppa K
SinghRohen H
FavorskayaMargarita
Nota di contenuto: -- Evaluating the top Machine Learning Classifiers Used in Diabetes Prediction -- A Machine Learning-Based Approach to Enhance Fraud Detection Using Decision Tree -- Oropharyngeal Cancer Detection with Machine Learning for Precision Diagnosis -- A Deep Learning Framework for Crime Detection -- Deep Learning and Bio-Inspired Algorithm Based Chat Bot, etc.
Sommario/riassunto: This book includes selected high-quality research papers presented at 3rd International Conference on Biologically Inspired Techniques in Many Criteria Decision Making (BITMDM 2024) organized by School of Engineering and Technology, Nagaland University, Dimapur, India on 6th and 7th December 2024. This book presents the recent advances in techniques which are biologically inspired and their usage in the field of single and many criteria decision making. Further, the topics covered in this book are divided into different sections like: i) healthcare and biomedical applications, ii) security, fraud detection, and cybersecurity, iii) intelligent systems and decision support, iv) agriculture and environment, v) image processing and multi-media analysis, and vi) emerging technologies and applications.
Titolo autorizzato: Biologically Inspired Techniques in Many-Criteria Decision Making  Visualizza cluster
ISBN: 3-031-82706-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910987782503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Learning and Analytics in Intelligent Systems, . 2662-3455 ; ; 45