Vai al contenuto principale della pagina

Smooth and nonsmooth high dimensional chaos and the melnikov-type methods / / Jan Awrejcewicz, Mariusz M. Holicke



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Awrejcewicz J (Jan) Visualizza persona
Titolo: Smooth and nonsmooth high dimensional chaos and the melnikov-type methods / / Jan Awrejcewicz, Mariusz M. Holicke Visualizza cluster
Pubblicazione: New Jersey, : World Scientific, c2007
Edizione: 1st ed.
Descrizione fisica: 1 online resource (318 p.)
Disciplina: 003/.857
Soggetto topico: Chaotic behavior in systems
Differentiable dynamical systems
Nonlinear oscillators
Altri autori: HolickeMariusz M  
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references (p. 285-289) and index.
Nota di contenuto: Contents; Preface; 1. A Role of the Melnikov-Type Methods in Applied Sciences; 1.1 Introduction; 1.2 Application of the Melnikov-type methods; 2. Classical Melnikov Approach; 2.1 Introduction; 2.2 Geometric interpretation; 2.3 Melnikov's function; 3. Homoclinic Chaos Criterion in a Rotated Froude Pendulum with Dry Friction; 3.1 Mathematical Model; 3.2 Homoclinic Chaos Criterion; 3.3 Numerical Simulations; 4. Smooth and Nonsmooth Dynamics of a Quasi- Autonomous Oscillator with Coulomb and Viscous Frictions; 4.1 Stick-Slip Oscillator with Periodic Excitation
4.2 Analysis of the Wandering Trajectories4.3 Comparison of Analytical and Numerical Results; 5. Application of the Melnikov-Gruendler Method to Mechanical Systems; 5.1 Mechanical Systems with Finite Number of Degrees-of- Freedom; 5.2 2-DOFs Mechanical Systems; 5.3 Reduction of the Melnikov-Gruendler Method for 1-DOF Systems; 6. A Self-Excited Spherical Pendulum; 6.1 Analytical Prediction of Chaos; 6.2 Numerical Results; 7. A Double Self-excited Duffing-type Oscillator; 7.1 Analytical Prediction of Chaos; 7.2 Numerical Simulations; 7.3 Additional Numerical Example
8. A Triple Self-Excited Du ng-type Oscillator8.1 Physical and Mathematical Models; 8.2 Analytical Prediction of Homoclinic Intersections; Bibliography; Index
Sommario/riassunto: This book focuses on the development of Melnikov-type methods applied to high dimensional dynamical systems governed by ordinary differential equations. Although the classical Melnikov's technique has found various applications in predicting homoclinic intersections, it is devoted only to the analysis of three-dimensional systems (in the case of mechanics, they represent one-degree-of-freedom nonautonomous systems). This book extends the classical Melnikov's approach to the study of high dimensional dynamical systems, and uses simple models of dry friction to analytically predict the occurren
Titolo autorizzato: Smooth and nonsmooth high dimensional chaos and the melnikov-type methods  Visualizza cluster
ISBN: 1-281-91872-5
9786611918729
981-270-910-X
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910807384703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: World Scientific series on nonlinear science. : Series A, . -Monographs and treatises ; ; v. 60.