|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910807384703321 |
|
|
Autore |
Awrejcewicz J (Jan) |
|
|
Titolo |
Smooth and nonsmooth high dimensional chaos and the melnikov-type methods / / Jan Awrejcewicz, Mariusz M. Holicke |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
New Jersey, : World Scientific, c2007 |
|
|
|
|
|
|
|
ISBN |
|
1-281-91872-5 |
9786611918729 |
981-270-910-X |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (318 p.) |
|
|
|
|
|
|
Collana |
|
World Scientific series on nonlinear science. Series A ; ; v. 60 |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Chaotic behavior in systems |
Differentiable dynamical systems |
Nonlinear oscillators |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. 285-289) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Contents; Preface; 1. A Role of the Melnikov-Type Methods in Applied Sciences; 1.1 Introduction; 1.2 Application of the Melnikov-type methods; 2. Classical Melnikov Approach; 2.1 Introduction; 2.2 Geometric interpretation; 2.3 Melnikov's function; 3. Homoclinic Chaos Criterion in a Rotated Froude Pendulum with Dry Friction; 3.1 Mathematical Model; 3.2 Homoclinic Chaos Criterion; 3.3 Numerical Simulations; 4. Smooth and Nonsmooth Dynamics of a Quasi- Autonomous Oscillator with Coulomb and Viscous Frictions; 4.1 Stick-Slip Oscillator with Periodic Excitation |
4.2 Analysis of the Wandering Trajectories4.3 Comparison of Analytical and Numerical Results; 5. Application of the Melnikov-Gruendler Method to Mechanical Systems; 5.1 Mechanical Systems with Finite Number of Degrees-of- Freedom; 5.2 2-DOFs Mechanical Systems; 5.3 Reduction of the Melnikov-Gruendler Method for 1-DOF Systems; 6. A Self-Excited Spherical Pendulum; 6.1 Analytical Prediction of Chaos; 6.2 Numerical Results; 7. A Double Self-excited Duffing-type Oscillator; 7.1 Analytical Prediction of Chaos; 7.2 Numerical Simulations; 7.3 Additional Numerical Example |
8. A Triple Self-Excited Du ng-type Oscillator8.1 Physical and |
|
|
|
|