Vai al contenuto principale della pagina

Microwave and wireless synthesizers : theory and design / / Ulrich L. Rohde, Enrico Rubiola, Jerry C. Whitaker



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Rohde Ulrich L. Visualizza persona
Titolo: Microwave and wireless synthesizers : theory and design / / Ulrich L. Rohde, Enrico Rubiola, Jerry C. Whitaker Visualizza cluster
Pubblicazione: Hoboken, NJ : , : Wiley, , 2021
©2021
Edizione: Second edition.
Descrizione fisica: 1 online resource (xxii, 794 pages) : illustrations
Disciplina: 621.3815486
Soggetto topico: Frequency synthesizers - Design and construction
Phase-locked loops
Digital electronics
Microwave circuits - Design and construction
Radio frequency
Soggetto genere / forma: Electronic books.
Persona (resp. second.): RubiolaEnrico <1957->
WhitakerJerry C.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- Author Biography -- Preface -- Important Notations -- Chapter 1 Loop Fundamentals -- 1-1 Introduction to Linear Loops -- 1-2 Characteristics of a Loop -- 1-3 Digital Loops -- 1-4 Type 1 First‐Order Loop -- 1-5 Type 1 Second‐Order Loop -- 1-6 Type 2 Second‐Order Loop -- 1-6-1 Transient Behavior of Digital Loops Using Tri‐state Phase Detectors -- 1-7 Type 2 Third‐Order Loop -- 1-7-1 Transfer Function of Type 2 Third‐Order Loop -- 1-7-2 FM Noise Suppression -- 1-8 Higher‐Order Loops -- 1-8-1 Fifth‐Order Loop Transient Response -- 1-9 Digital Loops with Mixers -- 1-10 Acquisition -- 1-10-0 Example 1 -- 1-10-1 Pull‐in Performance of the Digital Loop -- 1-10-2 Coarse Steering of the VCO as an Acquisition Aid -- 1-10-3 Loop Stability -- References -- Suggested Reading -- Chapter 2 ALMOST ALL ABOUT PHASE NOISE -- 2-1 INTRODUCTION TO PHASE NOISE -- 2-1-1 The Clock Signal -- 2-1-2 The Power Spectral Density (PSD) -- 2-1-3 Basics of Noise -- 2-1-4 Phase and Frequency Noise -- 2-2 THE ALLAN VARIANCE AND OTHER TWO‐SAMPLE VARIANCES -- 2-2-1 Frequency Counters -- 2-2-2 The Two‐Sample Variances AVAR, MVAR, and PVAR -- 2-2-3 Conversion from Spectra to Two‐Sample Variances -- 2-3 PHASE NOISE IN COMPONENTS -- 2-3-1 Amplifiers -- 2-3-2 Frequency Dividers -- 2-3-3 Frequency Multipliers -- 2-3-4 Direct Digital Synthesizer (DDS) -- 2-3-5 Phase Detectors -- 2-3-6 Noise Contribution from Power Supplies -- 2-4 PHASE NOISE IN OSCILLATORS -- 2-4-1 Modern View of the Leeson Model -- 2-4-2 Circumventing the Resonator's Thermal Noise -- 2-4-3 Oscillator Hacking -- 2-5 THE MEASUREMENT OF PHASE NOISE -- 2-5-1 Double‐Balanced Mixer Instruments -- 2-5-2 The Cross‐Spectrum Method -- 2-5-3 Digital Instruments -- 2-5-4 Pitfalls and Limitations of the Cross‐Spectrum Measurements -- 2-5-5 The Bridge (Interferometric) Method.
2-5-6 Artifacts and Oddities Often Found in the Real World -- 2-5 References -- 2-5 SUGGESTED READINGS -- 2-5-6 Power spectra and Fourier transform -- 2-5-6 Electromagnetic Compatibility -- 2-5-6 General Aspects of Noise -- 2-5-6 Phase Noise, Frequency Stability, and Measurements -- 2-5-6 Amplifiers -- 2-5-6 Frequency Dividers -- 2-5-6 Frequency Multipliers -- 2-5-6 DDS -- 2-5-6 Phase‐Frequency Detectors -- 2-5-6 Oscillators -- 2-5-6 Resonators -- 2-5-6 Double‐Balanced Mixer -- Chapter 3 Special Loops -- 3-1 Introduction -- 3-2 Direct Digital Synthesis Techniques -- 3-2-1 A First Look at Fractional N -- 3-2-2 Digital Waveform Synthesizers -- 3-2-3 Signal Quality -- 3-2-4 Future Prospects -- 3-3 Loops with Delay Line as Phase Comparators -- 3-4 Fractional Division N Synthesizers -- 3-4-1 Example Implementation -- 3-4-2 Some Special Past Patents for Fractional Division N Synthesizers -- References -- Bibliography -- FRACTIONAL DIVISION N READINGS -- Chapter 4 LOOP COMPONENTS -- 4-1 INTRODUCTION TO OSCILLATORS AND THEIR MATHEMATICAL TREATMENT -- 4-2 THE COLPITTS OSCILLATOR -- 4-2-1 Linear Approach -- 4-2-2 Design Example for a 350 MHz Fixed‐Frequency Colpitts Oscillator -- 4-2-3 Validation Circuits -- 4-2-4 Series Feedback Oscillator [5, Appendix A, pp. 384-388] -- 4-2-5 2400 MHz MOSFET‐Based Push-Pull Oscillator -- 4-2-6 Oscillators for IC Applications -- 4-2-7 Noise in Semiconductors and Circuits -- 4-2-8 Summary -- 4-3 USE OF TUNING DIODES -- 4-3-1 Diode Tuned Resonant Circuits -- 4-3-2 Practical Circuits -- 4-4 USE OF DIODE SWITCHES -- 4-4-1 Diode Switches for Electronic Band Selection -- 4-4-2 Use of Diodes for Frequency Multiplication -- 4-5 REFERENCE FREQUENCY STANDARDS -- 4-5-1 Specifying Oscillators -- 4-5-2 Typical Examples of Crystal Oscillator Specifications -- 4-6 MIXER APPLICATIONS -- 4-7 PHASE/FREQUENCY COMPARATORS -- 4-7-1 Diode Rings.
4-7-2 Exclusive ORs -- 4-7-3 Sample/Hold Detectors -- 4-7-4 Edge‐Triggered JK Master/Slave Flip‐Flops -- 4-7-5 Digital Tri‐State Comparators -- 4-8 WIDEBAND HIGH‐GAIN AMPLIFIERS -- 4-8-1 Summation Amplifiers -- 4-8-2 Differential Limiters -- 4-8-3 Isolation Amplifiers -- 4-8-4 Example Implementations -- 4-9 PROGRAMMABLE DIVIDERS -- 4-9-1 Asynchronous Counters -- 4-9-2 Programmable Synchronous Up‐/Down‐Counters -- 4-9-3 Advanced Implementation Example -- 4-9-4 Swallow Counters/Dual‐Modulus Counters -- 4-9-5 Look‐Ahead and Delay Compensation -- 4-10 LOOP FILTERS -- 4-10-1 Passive RC Filters -- 4-10-2 Active RC Filters -- 4-10-3 Active Second‐Order Low‐Pass Filters -- 4-10-4 Passive LC Filters -- 4-10-5 Spur‐Suppression Techniques -- 4-11 MICROWAVE OSCILLATOR DESIGN -- 4-11-1 The Compressed Smith Chart -- 4-11-2 Series or Parallel Resonance -- 4-11-3 Two‐Port Oscillator Design -- 4-12 MICROWAVE RESONATORS -- 4-12-1 SAW Oscillators -- 4-12-2 Dielectric Resonators -- 4-12-3 YIG Oscillators -- 4-12-4 Varactor Resonators -- 4-12-5 Ceramic Resonators -- 4-12 REFERENCES -- 4-12 SUGGESTED READINGS -- 4-12-5 Section 4‐3 Documents -- 4-12-5 Section 4‐5 Documents -- 4-12-5 Section 4‐6 Documents -- 4-12-5 Section 4‐7 Documents -- 4-12-5 Section 4‐8 Documents -- 4-12-5 Section 4.9 Documents -- 4-12-5 Section 4.10 Documents -- 4-12-5 Section 4.11 Documents -- 4-12-5 Section 4.12 Documents -- Chapter 5 Digital PLL Synthesizers -- 5-1 Multiloop Synthesizers Using Different Techniques -- 5-1-1 Direct Frequency Synthesis -- 5-1-2 Multiple Loops -- 5-2 System Analysis -- 5-3 Low‐Noise Microwave Synthesizers -- 5-3-1 Building Blocks -- 5-3-2 Output Loop Response -- 5-3-3 Low Phase Noise References: Frequency Standards -- 5-3-4 Critical Stage -- 5-3-5 Time Domain Analysis -- 5-3-6 Summary -- 5-3-7 Two Commercial Synthesizer Examples.
5-4 Microprocessor Applications in Synthesizers -- 5-5 Transceiver Applications -- 5-6 About Bits, Symbols, and Waveforms -- 5-6-1 Representation of a Modulated RF Carrier -- 5-6-2 Generation of the Modulated Carrier -- 5-6-3 Putting It all Together -- 5-6-4 Combination of Techniques -- 5-6 Acknowledgments -- 5-6 References -- 5-6 Bibliography and Suggested Reading -- Chapter 6 A High‐Performance Hybrid Synthesizer -- 6-1 Introduction -- 6-2 Basic Synthesizer Approach -- 6-3 Loop Filter Design -- 6-4 Summary -- Bibliography -- Chapter A Mathematical Review -- A-1 FUNCTIONS OF A COMPLEX VARIABLE -- A-2 COMPLEX PLANES -- A-2-1 Functions in the Complex Frequency Plane -- A-3 BODE DIAGRAM -- A-4 LAPLACE TRANSFORM -- A-4-1 The Step Function -- A-4-2 The Ramp -- A-4-3 Linearity Theorem -- A-4-4 Differentiation and Integration -- A-4-5 Initial Value Theorem -- A-4-6 Final Value Theorem -- A-4-7 The Active Integrator -- A-4-8 Locking Behavior of the PLL -- A-5 LOW‐NOISE OSCILLATOR DESIGN -- A-5-1 Example Implementation -- A-6 OSCILLATOR AMPLITUDE STABILIZATION -- A-7 VERY LOW PHASE NOISE VCO FOR 800 MHZ -- REFERENCES -- Chapter B A General‐Purpose Nonlinear Approach to the Computation of Sideband Phase Noise in Free‐Running Microwave and RF Oscillators -- B-1 Introduction -- B-2 Noise Generation in Oscillators -- B-3 Bias‐Dependent Noise Model -- B-3-1 Bias‐Dependent Model -- B-3-2 Derivation of the Model -- B-4 General Concept of Noisy Circuits -- B-4-1 Noise from Linear Elements -- B-5 Noise Figure of Mixer Circuits -- B-6 Oscillator Noise Analysis -- B-7 Limitations of the Frequency‐Conversion Approach -- B-7-1 Assumptions -- B-7-2 Conversion and Modulation Noise -- B-7-3 Properties of Modulation Noise -- B-7-4 Noise Analysis of Autonomous Circuits -- B-7-5 Conversion Noise Analysis Results -- B-7-6 Modulation Noise Analysis Results.
B-8 Summary of the Phase Noise Spectrum of the Oscillator -- B-9 Verification Examples for the Calculation of Phase Noise in Oscillators Using Nonlinear Techniques -- B-9-1 Example 1: High‐Q Case Microstrip DRO -- B-9-2 Example 2: 10 MHz Crystal Oscillator -- B-9-3 Example 3: The 1‐GHz Ceramic Resonator VCO -- B-9-4 Example 4: Low Phase Noise FET Oscillator -- B-9-5 Example 5: Millimeter‐Wave Applications -- B-9-6 Example 6: Discriminator Stabilized DRO -- B-10 Summary -- B-10 References -- Chapter C EXAMPLE OF WIRELESS SYNTHESIZERS USING COMMERCIAL ICs -- Chapter D MMIC‐BASED SYNTHESIZERS -- D-1 INTRODUCTION -- BIBLIOGRAPHY -- Chapter E ARTICLES ON DESIGN OF DIELECTRIC RESONATOR OSCILLATORS -- E-1 THE DESIGN OF AN ULTRA‐LOW PHASE NOISE DRO -- E-1-1 Basic Considerations and Component Selection -- E-1-2 Component Selection -- E-1-3 DRO Topologies -- E-1-4 Small Signal Design Approach for the Parallel Feedback Type DRO -- E-1-5 Simulated Versus Measured Results -- E-1-6 Physical Embodiment -- E-1-7 Acknowledgments -- E-1-8 Final Remarks -- REFERENCES -- BIBLIOGRAPHY -- E-2 A NOVEL OSCILLATOR DESIGN WITH METAMATERIAL‐MÖBIUS COUPLING TO A DIELECTRIC RESONATOR -- E-2-1 Abstract -- E-2-2 Introduction -- REFERENCES -- Chapter F OPTO‐ELECTRONICALLY STABILIZED RF OSCILLATORS -- F-1 INTRODUCTION -- F-1-1 Oscillator Basics -- F-1-2 Resonator Technologies -- F-1-3 Motivation for OEO -- F-1-4 Operation Principle of the OEO -- F-2 EXPERIMENTAL EVALUATION AND THERMAL STABILITY OF OEO -- F-2-1 Experimental Setup -- F-2-2 Phase Noise Measurements -- F-2-3 Thermal Sensitivity Analysis of Standard Fibers -- F-2-4 Temperature Sensitivity Measurements -- F-2-5 Temperature Sensitivity Improvement with HC‐PCF -- F-2-6 Improve Thermal Stability Versus Phase Noise Degradation -- F-2-7 Passive Temperature Compensation -- F-2-8 Improving Effective Q with Raman Amplification.
F-3 FORCED OSCILLATION TECHNIQUES OF OEO.
Titolo autorizzato: Microwave and wireless synthesizers  Visualizza cluster
ISBN: 1-5231-4359-2
1-119-66611-2
1-119-66609-0
1-119-66612-0
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910555149603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui