Vai al contenuto principale della pagina
Autore: | Sakho Ibrahima |
Titolo: | Nuclear physics 1 : nuclear deexcitations, spontaneous nuclear reactions / / Ibrahima Sakho |
Pubblicazione: | Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021] |
©2021 | |
Descrizione fisica: | 1 online resource (368 pages) |
Disciplina: | 539.70212 |
Soggetto topico: | Nuclear physics |
Nuclear physics - History | |
Soggetto genere / forma: | Electronic books. |
Nota di contenuto: | Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1. Overview of the Nucleus -- 1.1. Discovery of the electron -- 1.1.1. Hittorf and Crookes experiments -- 1.1.2. Perrin and Thomson experiments -- 1.1.3. Millikan experiment -- 1.2. The birth of the nucleus -- 1.2.1. Perrin and Thomson atomic model -- 1.2.2. Geiger and Marsden experiment -- 1.2.3. Rutherford scattering: Planetary atomic model -- 1.2.4. Rutherford's differential effective cross-section -- 1.3. Composition of the nucleus -- 1.3.1. Discovery of the proton -- 1.3.2. Discovery of the neutron -- 1.3.3. Internal structure of nucleons: u and d quarks -- 1.3.4. Isospin -- 1.3.5. Nuclear spin -- 1.3.6. Nuclear magnetic moment -- 1.4. Nucleus dimensions -- 1.4.1. Nuclear radius -- 1.4.2. Nuclear density, skin thickness -- 1.5. Nomenclature of nuclides -- 1.5.1. Isotopes, isobars, isotones -- 1.5.2. Mirror nuclei, Magic nuclei -- 1.6. Nucleus stability -- 1.6.1. Atomic mass unit -- 1.6.2. Segrè diagram, nuclear energy surface -- 1.6.3. Mass defect, binding energy -- 1.6.4. Binding energy per nucleon, Aston curve -- 1.6.5. Separation energy of a nucleon -- 1.6.6. Nuclear forces -- 1.7. Exercises -- 1.8. Solutions to exercises -- Chapter 2. Nuclear Deexcitations -- 2.1. Nuclear shell model -- 2.1.1. Overview of nuclear models -- 2.1.2. Individual state of a nucleon -- 2.1.3. Form of the harmonic potential -- 2.1.4. Shell structure derived from a harmonic potential -- 2.1.5. Shell structure derived from a Woods-Saxon potential -- 2.2. Angular momentum and parity -- 2.2.1. Angular momentum and parity of ground state -- 2.2.2. Angular momentum and parity of an excited state -- 2.3. Gamma deexcitation -- 2.3.1. Definition, deexcitation energy -- 2.3.2. Angular momentum and multipole order of γ-radiation. |
2.3.3. Classification of γ-transitions, parity of γ-radiation -- 2.3.4. γ-transition probabi lities, Weisskopf estimates -- 2.3.5. Conserving angular momentum and parity -- 2.4. Internal conversion -- 2.4.1. Definition -- 2.4.2. Internal conversion coefficients -- 2.4.3. Partial conversion coefficients -- 2.4.4. K-shell conversion -- 2.5. Deexcitation by nucleon emission -- 2.5.1. Definition -- 2.5.2. Energy balance -- 2.5.3. Bound levels and virtual levels -- 2.5.4. Study of an example of delayed-neutron emission -- 2.6. Bethe-Weizsäcker semi-empirical mass formula -- 2.6.1. Presentation of the liquid-drop model -- 2.6.2. Bethe-Weizsäcker formula, binding energy -- 2.6.3. Volume energy, surface energy -- 2.6.4. Coulomb energy -- 2.6.5. Asymmetry energy, pairing energy -- 2.6.6. Principle of semi-empirical evaluation of coefficients in Bethe-Weizsäcker form -- 2.6.7. Isobar binding energy, the most stable isobar -- 2.7. Mass parabola equation for odd A -- 2.7.1. Expression -- 2.7.2. Determining the nuclear charge of the most stable isobar from the decay energy -- 2.7.3. Mass parabola equation for even A -- 2.8. Nuclear potential barrier -- 2.8.1. Definition, model of the rectangular potential well -- 2.8.2. Modifying the model of the rectangular potential well -- 2.9. Exercises -- 2.10. Solutions to exercises -- Chapter 3. Alpha Radioactivity -- 3.1. Experimental facts -- 3.1.1. Becquerel's observations, radioactivity -- 3.1.2. Discovery of α radioactivity and β− radioactivity -- 3.1.3. Discovery of the positron -- 3.1.4. Discovery of the neutrino, Cowan and Reines experiment -- 3.1.5. Highlighting α, β and γ radiation -- 3.2. Radioactive decay -- 3.2.1. Rutherford and Soddy's empirical law -- 3.2.2. Radioactive half-life -- 3.2.3. Average lifetime of a radioactive nucleus -- 3.2.4. Activity of a radioactive source -- 3.3. α radioactivity. | |
3.3.1. Balanced equation -- 3.3.2. Mass defect (loss of matter), decay energy -- 3.3.3. Decay energy diagram -- 3.3.4. Fine structure of α lines -- 3.3.5. Geiger-Nuttall law -- 3.3.6. Quantum model of α emission by tunnel effect -- 3.3.7. Estimating the radioactive half-life, Gamow factor -- 3.4. Exercises -- 3.5. Solutions to exercises -- Chapter 4. Beta Radioactivity, Radioactive Family Tree -- 4.1. Beta radioactivity -- 4.1.1. Experiment of Frédéric and Irène Joliot-Curie: discovery of artificial radioactivity -- 4.1.2. Balanced equation, β decay energy -- 4.1.3. Continuous β emission spectrum -- 4.1.4. Sargent diagram, β transition selection rules -- 4.1.5. Decay energy diagram -- 4.1.6. Condition of β + emission -- 4.1.7. Decay by electron capture -- 4.1.8. Double β decay, branching ratio -- 4.1.9. Atomic deexcitation, Auger effect -- 4.2. Radioactive family trees -- 4.2.1. Definition -- 4.2.2. Simple two-body family tree -- 4.2.3. Multi-body family tree, Bateman equations -- 4.2.4. Secular equilibrium -- 4.3. Radionuclide production by nuclear bombardment -- 4.3.1. General aspects -- 4.3.2. Production rate of a radionuclide -- 4.3.3. Production yield of a radionuclide -- 4.4. Natural radioactive series -- 4.4.1. Presentation -- 4.4.2. Thorium (4n) family -- 4.4.3. Neptunium (4n + 1) family -- 4.4.4. Uranium-235 (4n +2) family -- 4.4.5. Uranium-238 (4n + 3) family -- 4.5. Exercises -- 4.6. Solutions to exercises -- Appendices -- Appendix 1 -- Appendix 2 -- References -- Index -- EULA. | |
Titolo autorizzato: | Nuclear Physics 1 |
ISBN: | 1-119-88146-3 |
1-119-88148-X | |
1-119-88147-1 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910555056703321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |