Vai al contenuto principale della pagina

3D printable gel-inks for tissue engineering : chemistry, processing, and applications / / Anuj Kumar, Stefan Ioan Voicu, Vijay Kumar Thakur, editors



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: 3D printable gel-inks for tissue engineering : chemistry, processing, and applications / / Anuj Kumar, Stefan Ioan Voicu, Vijay Kumar Thakur, editors Visualizza cluster
Pubblicazione: Singapore : , : Springer, , [2021]
©2021
Descrizione fisica: 1 online resource (400 pages)
Disciplina: 610.28
Soggetto topico: Biomedical materials
Three-dimensional printing
Tissue engineering
Persona (resp. second.): KumarAnuj
VoicuStefan Ioan
ThakurVijay Kumar
Nota di contenuto: Intro -- Preface -- About This Book -- Contents -- About the Editors -- 1 Introduction to 3D Printing Technology for Biomedical Applications -- 1 Introduction -- 2 Printing Mechanism: Classification of 3D Printing Techniques -- 2.1 Selective Laser Sintering -- 2.2 Stereolithography -- 2.3 Fused Deposition Modeling -- 2.4 Ink-Jet Printing -- 3 Evolution of 3D-Printed Medical Objects-Then and Now -- 4 3D Printable Materials for Medical Applications -- 5 Significance of 3D-Printed Objects in the Medical Field -- 6 Applications of 3D Printing -- 6.1 3D Printing of Surgical Preparation -- 6.2 Custom-Made Prosthetics -- 6.3 Dental -- 6.4 3D Printing of Tissues, Organoids, and Tissue Regeneration -- 6.5 Medication Dosage and Pharmacology -- 6.6 Manufacturing of Surgical Tools and Medical Metal Materials -- 7 Potential and Major Limitations -- References -- 2 Characterization of Bioinks for 3D Bioprinting -- 1 Bioink Definition, Related Terms -- 2 Properties of Bioinks -- 2.1 Bioink for Extrusion-Based Bioprinting -- 2.2 Bioink for Laser-Based Bioprinting -- 2.3 Bioink for Droplet-Based Bioink -- 3 Characterization of Bioinks -- 3.1 Rheology -- 3.2 Printability -- 3.3 Biofabrication Window -- 3.4 Cell Density -- 3.5 Cytocompatibility and Functionality -- 3.6 Bioink Purity -- 3.7 Bioink Degradation -- 3.8 Viscosity and Molecular Weight -- 3.9 Bioink Homogeneity -- 3.10 Solubility -- 3.11 Spheroid Characterization -- 4 Conclusion and Future Prospects -- References -- 3 3D Printing of Hydrogel Constructs Toward Targeted Development in Tissue Engineering -- 1 Introduction -- 2 3D Printing Technologies for Hydrogel Inks -- 2.1 Light-Assisted Direct-Printing -- 2.2 Inkjet Printing -- 2.3 Direct Dispensing -- 3 Trends and Strategies in Designing Hydrogel-Based Inks -- 3.1 Single-Component Hydrogel Inks -- 3.2 Bi-Component Hydrogel Inks.
3.3 Nanocomposite Hydrogel Inks -- 3.4 Multicomponent Hydrogel Inks -- 3.5 Cell-Embedding and the Bio-Printability Window -- 4 Key Parameters in Designing Printable Hydrogel Formulation -- 4.1 Material Parameters -- 4.2 Crosslinking Strategies -- 4.3 Fabrication Parameters -- 4.4 Investigation of Printability -- 5 Evolution to 4D Printing -- References -- 4 Three-Dimensional Self-healing Scaffolds for Tissue Engineering Applications -- 1 Introduction -- 2 Understanding Nature's Method of Self-healing -- 3 Self-healing Supramolecular Hydrogels -- 4 Self-assembled Hydrogels for Tissue Engineering and Drug Delivery Applications -- 5 Supramolecular Chemistry -- 5.1 Hydrogen Bonding -- 5.2 Metal-Ligand Coordination Complexation -- 5.3 Electrostatic Interaction -- 5.4 Host-Guest Interactions -- 6 π-π Interactions -- 7 Bioinspired Systems Chemistry -- 8 Conclusion -- References -- 5 Gel-Inks for 3D Printing in Corneal Tissue Engineering -- 1 Introduction -- 1.1 Structure of the Cornea -- 1.2 Desired Qualities for Cornea Replacement -- 2 Corneal Regeneration in Tissue Engineering -- 2.1 Scaffold-Based Tissue Engineering for Corneal Regeneration -- 2.2 Synthetic Biomaterials for Corneal Regeneration -- 2.3 Corneal Regeneration Using Naturally Derived Biomaterials -- 3 Corneal Regeneration Using Gel-Based Scaffolds -- 3.1 Desired Properties of Gel-Inks for 3D Printing in Corneal Tissue Engineering -- 3.2 Biocompatible 3D-Printing Techniques for Bioinks Design -- 4 Combination and Characterization of Gel-Inks for in Corneal Regeneration -- 4.1 Rheological and Printability Examinations -- 4.2 Light Transmission Examination -- 4.3 Mechanical Characterizations -- 4.4 Biocompatibility Assessment -- 4.5 Oxygen Permeability -- 5 Conclusion and Future Perspectives -- References -- 6 Three Dimensional (3D) Printable Gel-Inks for Skin Tissue Regeneration.
1 Introduction -- 2 Skin: A Histological Overview -- 2.1 Epidermis -- 2.2 Basement Membrane -- 3 Skin Wound Healing: What We Know and Need to Know -- 4 Bioengineered Skin Substitutes -- 4.1 Epidermal Substitutes -- 4.2 Dermal Substitutes -- 4.3 Dermo-Epidermal Substitutes -- 5 Advanced Strategies for Skin Repair and Regeneration -- 5.1 Top-Down Approaches for Skin Regeneration -- 5.2 Bottom-Up Approaches for Skin Regeneration -- 5.3 Laser-Assisted 3D Bioprinting -- 5.4 Drop-Based Bioprinting -- 5.5 Extrusion-Based Bioprinting -- 5.6 Stereolithography-Based Bioprinting -- 5.7 Electrohydrodynamic-Based Bioprinting -- 5.8 Microfluidic-Based Bioprinting -- 6 Natural 3D Printable Gel-Inks for Skin Regeneration -- 6.1 Alginate -- 6.2 Collagen -- 6.3 Gelatin -- 6.4 Chitosan -- 6.5 Silk Fibroin -- 6.6 Decellularized Extracellular Matrix (dECM) -- 7 Synthetic 3D Printable Gel-Inks for Skin Regeneration -- 7.1 Poly(ε-caprolactone) (PCL) -- 7.2 Poly(Lactic Acid) (PLA) -- 7.3 Polyurethane (PU) -- 8 Conclusion -- References -- 7 Biofunctional Inks for 3D Printing in Skin Tissue Engineering -- 1 Introduction -- 2 The Structure and Function of Skin -- 3 Wound Types and Wound Healing Process -- 4 Skin Tissue Engineering -- 5 Overview of 3D Bioprinting -- 5.1 3D Bioprinting Technologies -- 6 3D Skin Bioprinting -- 6.1 Design Considerations for Skin Bioprinting -- 7 Biofunctional Inks for Bioprinting in Skin Tissue Engineering -- 7.1 Natural Bioinks -- 7.2 Bioinks Based on Synthetic Polymers -- 8 Current Challenges and Advances in Developing of Biofunctional Inks in Skin Tissue Engineering -- 9 Conclusion -- References -- 8 Bioceramic-Starch Paste Design for Additive Manufacturing and Alternative Fabrication Methods Applied for Developing Biomedical Scaffolds -- 1 Introduction -- 2 Starch -- 3 Bioceramics-Starch Pastes -- 3.1 Oxide Ceramics and Starch.
3.2 Glasses and Glass-Ceramics and Starch -- 3.3 Calcium Phosphates and Starch -- 4 Conventional Methods for Bioceramic Scaffold Fabrication -- 5 Additive Manufacturing for Bioceramic Scaffold Fabrication -- 6 Bone Scaffold Prototype with Hydroxyapatite and Starch -- 6.1 Technology Description -- 6.2 Raw Ceramic Preparation -- 6.3 Powder Preparation and Processing -- 6.4 Scaffold Design -- 6.5 Forming, Processing, and Sintering -- 6.6 Prototype Morphology -- 7 Conclusions -- References -- 9 Additive Manufacturing of Bioceramic Scaffolds for Bone Tissue Regeneration with Emphasis on Stereolithographic Processing -- 1 Scaffolds for Bone Repair: An Overview -- 2 Scaffold Requirements -- 2.1 Biocompatibility -- 2.2 Porosity -- 2.3 Mechanical Properties -- 2.4 Biodegradability -- 2.5 Surface Properties and Interaction with Cells -- 3 Conventional Methods for Ceramic Scaffold Fabrication -- 3.1 Foaming Methods -- 3.2 Phase Separation Methods -- 3.3 Spinning Methods -- 3.4 Thermal Consolidation of Particles -- 3.5 Sponge Replica Method -- 4 Additive Manufacturing Technologies for Ceramic Scaffold Fabrication -- 5 Stereolithographic Methods -- 5.1 Processing -- 5.2 The Slurry: Composition and Characteristics -- 5.3 The Photopolymerization Process: Chemical Basis -- 5.4 Key Parameters for the Photopolymerization Process -- 5.5 Post-processing -- 5.6 SLA: Advantages and Disadvantages -- 6 The Latest Frontier: Digital Light Processing (DLP)-Based Stereolithography -- 6.1 System Setup -- 6.2 Digital Micro-mirror Device (DMD) -- 7 Current Applications of SLA- and DLP-Derived Ceramic Scaffolds -- 8 Conclusions -- References -- 10 3D Printable Gel-Inks for Microbes and Microbial Structures -- 1 Introduction -- 2 Bioprinting -- 3 Bioprinting Techniques -- 4 Bioprinting Materials -- 5 Bioprinting and Microbes -- 5.1 Viruses -- 5.2 Bacteria and Bacterial Structures.
6 Summary and Concluding Remarks -- References -- 11 Methods of Polysaccharides Crosslinking: Future-Promising Crosslinking Techniques of Alginate Hydrogels for 3D Printing in Biomedical Applications -- 1 Introduction -- 2 Types of Polysaccharides -- 2.1 Sulfated Polysaccharides -- 2.2 Non-sulfated Polysaccharides -- 3 Methods for Crosslinking the Polysaccharides -- 3.1 Physical Crosslinking -- 3.2 Chemical Crosslinking -- 4 Some Applications of 3D-Based Cosslinking Alginate Hydrogels in Biomedicine -- 4.1 Tissue Engineering -- 4.2 Wound Dressing -- 4.3 Drug Delivery -- 5 Summary -- References -- 12 Future Perspectives for Gel-Inks for 3D Printing in Tissue Engineering -- 1 Introduction -- 2 From Biomaterials to Tissue Engineering -- 3 Future Perspectives for 3D Bioprinting -- 4 Conclusions -- References.
Titolo autorizzato: 3D printable Gel-inks for Tissue Engineering  Visualizza cluster
ISBN: 981-16-4667-8
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910502972703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Gels Horizons: from Science to Smart Materials