Vai al contenuto principale della pagina
| Autore: |
Lusztig George
|
| Titolo: |
Characters of Reductive Groups over a Finite Field. (AM-107), Volume 107 / / George Lusztig
|
| Pubblicazione: | Princeton, NJ : , : Princeton University Press, , [2016] |
| ©1984 | |
| Descrizione fisica: | 1 online resource (408 pages) : illustrations |
| Disciplina: | 512/.2 |
| Soggetto topico: | Finite groups |
| Finite fields (Algebra) | |
| Characters of groups | |
| Soggetto non controllato: | Addition |
| Algebra representation | |
| Algebraic closure | |
| Algebraic group | |
| Algebraic variety | |
| Algebraically closed field | |
| Bijection | |
| Borel subgroup | |
| Cartan subalgebra | |
| Character table | |
| Character theory | |
| Characteristic function (probability theory) | |
| Characteristic polynomial | |
| Class function (algebra) | |
| Classical group | |
| Coefficient | |
| Cohomology with compact support | |
| Cohomology | |
| Combination | |
| Complex number | |
| Computation | |
| Conjugacy class | |
| Connected component (graph theory) | |
| Coxeter group | |
| Cyclic group | |
| Cyclotomic polynomial | |
| David Kazhdan | |
| Dense set | |
| Derived category | |
| Diagram (category theory) | |
| Dimension | |
| Direct sum | |
| Disjoint sets | |
| Disjoint union | |
| E6 (mathematics) | |
| Eigenvalues and eigenvectors | |
| Endomorphism | |
| Equivalence class | |
| Equivalence relation | |
| Existential quantification | |
| Explicit formula | |
| Explicit formulae (L-function) | |
| Fiber bundle | |
| Finite field | |
| Finite group | |
| Fourier transform | |
| Green's function | |
| Group (mathematics) | |
| Group action | |
| Group representation | |
| Harish-Chandra | |
| Hecke algebra | |
| Identity element | |
| Integer | |
| Irreducible representation | |
| Isomorphism class | |
| Jordan decomposition | |
| Line bundle | |
| Linear combination | |
| Local system | |
| Mathematical induction | |
| Maximal torus | |
| Module (mathematics) | |
| Monodromy | |
| Morphism | |
| Orthonormal basis | |
| P-adic number | |
| Parametrization | |
| Parity (mathematics) | |
| Partially ordered set | |
| Perverse sheaf | |
| Pointwise | |
| Polynomial | |
| Quantity | |
| Rational point | |
| Reductive group | |
| Ree group | |
| Schubert variety | |
| Scientific notation | |
| Semisimple Lie algebra | |
| Sheaf (mathematics) | |
| Simple group | |
| Simple module | |
| Special case | |
| Standard basis | |
| Subset | |
| Subtraction | |
| Summation | |
| Surjective function | |
| Symmetric group | |
| Tensor product | |
| Theorem | |
| Two-dimensional space | |
| Unipotent representation | |
| Vector bundle | |
| Vector space | |
| Verma module | |
| Weil conjecture | |
| Weyl group | |
| Zariski topology | |
| Classificazione: | SK 260 |
| Note generali: | Bibliographic Level Mode of Issuance: Monograph |
| Nota di bibliografia: | Includes bibliographical references and indexes. |
| Nota di contenuto: | Frontmatter -- TABLE OF CONTENTS -- INTRODUCTION -- 1. COMPUTATION OF LOCAL INTERSECTION COHOMOLOGY OF CERTAIN LINE BUNDLES OVER A SCHUBERT VARIETY -- 2. LOCAL INTERSECTION COHOMOLOGY WITH TWISTED COEFFICIENTS OF THE CLOSURES OF THE VARIETIES XW -- 3. GLOBAL INTERSECTION COHOMOLOGY WITH TWISTED COEFFICIENTS OF THE VARIETY X̅W -- 4. REPRESENTATIONS OF WEYL GROUPS -- 5. CELLS IN WEYL GROUPS -- 6. AN INTEGRALITY THEOREM AND A DISJOINTNESS THEOREM -- 7. SOME EXCEPTIONAL GROUPS -- 8. DECOMPOSITION OF INDUCED REPRESENTATIONS -- 9. CLASSICAL GROUPS -- 10. COMPLETION OF THE PROOF OF THEOREM 4.23 -- 11. EIGENVALUES OF FROBENIUS -- 12. ON THE STRUCTURE OF LEFT CELLS -- 13. RELATIONS WITH CONJUGACY CLASSES -- 14. CONCLUDING REMARKS -- APPENDIX -- REFERENCES -- SUBJECT INDEX -- NOTATION INDEX -- Backmatter |
| Sommario/riassunto: | This book presents a classification of all (complex)irreducible representations of a reductive group withconnected centre, over a finite field. To achieve this,the author uses etale intersection cohomology, anddetailed information on representations of Weylgroups. |
| Titolo autorizzato: | Characters of Reductive Groups over a Finite Field. (AM-107), Volume 107 ![]() |
| ISBN: | 1-4008-8177-3 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910154752803321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |