Vai al contenuto principale della pagina
Autore: | Lens Piet |
Titolo: | Nanobiohybrids for Advanced Wastewater Treatment and Energy Recovery |
Pubblicazione: | London : , : IWA Publishing, , 2023 |
©2023 | |
Edizione: | 1st ed. |
Descrizione fisica: | 1 online resource (244 pages) |
Disciplina: | 628.35 |
Soggetto topico: | Nanotechnology |
Green technology | |
Altri autori: | UddandaraoPriyanka |
Nota di contenuto: | Intro -- Cover -- Contents -- List of Contributors -- Preface -- Part 1: Concepts of Microbial Synthesis, Water Purification and Energy Storage -- Chapter 1: Introduction to wastewater treatment and energy recovery -- 1.1 Introduction -- 1.2 Process Fundamentals -- 1.3 Building Blocks of NBs -- 1.4 Environmental Remediation -- 1.5 Wastewater Treatment -- References -- Chapter 2 : Addressing the global water crisis: a comprehensive review of nanobiohybrid applications for water purification -- 2.1 Introduction -- 2.2 Root Cause Behind Continuous Freshwater Shrinking -- 2.3 Methodical Handling of Water Pollution -- 2.3.1 Treatment technologies -- 2.3.2 Major drawbacks of current water purification techniques -- 2.4 Nanobiohybrid (NBIOH) Catalyst in Water Purification -- 2.4.1 Use of nanoparticles in water purification and their problems -- 2.4.2 Enzymes in water purification and their problems -- 2.4.3 Use of NBIOH catalyst for water purification -- 2.4.3.1 Capacity of NBIOH to treat water -- 2.4.3.2 Problems associated with nanobiohybrid -- 2.5 Conclusion -- References -- Chapter 3 : Biological production of nanoparticles and their application in photocatalysis -- 3.1 Introduction -- 3.2 Green Synthesis of Nanoparticles -- 3.3 Biological Nanoparticles -- 3.3.1 Plants -- 3.3.2 Bacteria -- 3.4 Fungi -- 3.5 Algae -- 3.6 Photocatalysis -- 3.6.1 Batch degradation of organic pollutants using NPs -- 3.6.2 Photobioreactors -- 3.6.3 Nanobiohybrids -- 3.7 Challenges -- 3.7.1 Toxicity -- 3.7.2 Nanoparticles detection -- 3.7.3 Light accessibility -- 3.8 Conclusion -- References -- Chapter 4 : Energy storage devices: batteries and supercapacitors -- 4.1 Introduction -- 4.2 Batteries: Principles and Operation -- 4.2.1 Battery basics. |
4.2.1.1 Structure and components -- 4.2.1.2 Electrochemical reactions in batteries -- 4.2.2 Battery performance metrics -- 4.2.2.1 Cell, module, and pack level -- 4.2.2.2 Energy density -- 4.2.2.3 Power density -- 4.2.2.4 Specific energy (or gravimetric energy density) -- 4.2.2.5 Specific power (or gravimetric power density) -- 4.2.2.6 Cycle life -- 4.2.2.7 Charge-discharge efficiency -- 4.2.2.8 Self-discharge rate -- 4.2.2.9 Operating temperature -- 4.2.2.10 Impedance -- 4.2.2.11 Round-trip efficiency -- 4.3 Types of Batteries -- 4.3.1 Nickel-cadmium batteries -- 4.3.2 Lead-acid batteries -- 4.3.2.1 Lead-acid battery composition -- 4.3.2.2 Working principle of lead acid battery -- 4.3.2.3 Market perspective -- 4.3.3 Lithium-ion batteries -- 4.3.3.1 Lithium-ion battery composition -- 4.3.3.2 Working principle of lithium-ion battery -- 4.3.3.3 Market perspective -- 4.3.4 Sodium-ion batteries -- 4.3.5 Zinc-air batteries -- 4.4 Supercapacitors -- 4.4.1 Principles and operations -- 4.4.1.1 Electric double-layer capacitance -- 4.4.1.2 Faradaic capacitance -- 4.4.2 Supercapacitor electrode materials -- 4.4.2.1 Electrode materials for EDLC -- 4.4.2.2 Electrode materials for pseudocapacitor -- 4.4.2.3 Electrode materials for hybrid supercapacitor -- 4.5 Types of Supercapacitors -- 4.5.1 Electrochemical double-layer capacitors -- 4.5.2 Pseudocapacitors -- 4.5.3 Hybrid capacitor -- 4.6 Applications of Batteries and Supercapacitors -- 4.6.1 Portable electronics and consumer applications -- 4.6.2 Mobility of the future -- 4.6.2.1 Electric vehicles and hybrid vehicles -- 4.6.2.2 Aerospace applications -- 4.6.3 New energy technologies -- 4.6.3.1 Renewable energy integration. | |
4.6.3.2 Grid-scale energy storage -- 4.6.4 Defence application -- 4.7 Conclusion -- References -- Part 2: Utility of Organic, Inorganic and Magnetic Nanoparticles -- Chapter 5 : Nanobiohybrids using organic nanoparticles for applications in water and wastewater treatment -- 5.1 Introduction -- 5.2 Production of Nanobiohybrids -- 5.2.1 Nanohybrids based on cellulose -- 5.2.2 Nanohybrids based on gelatin -- 5.2.3 Nanohybrids based on chitosan -- 5.2.4 Nanohybrids based on pectin -- 5.2.5 Nanohybrid based on silk protein -- 5.3 Nanobiohybrid Applications in Water and Wastewater Treatment -- 5.3.1 Nanobiohybrids as adsorbent -- 5.3.2 Nanobiohybrids as catalyst (nanobiocatalysis) -- 5.3.2.1 Polymeric nanobiocatalyst -- 5.3.2.2 Silica-based nanobiocatalysts -- 5.3.2.3 Carbon-based nanobiocatalysts -- 5.3.2.4 Metal-based nanobiocatalysts -- 5.4 Conclusion -- References -- Chapter 6 : Assessing the feasibility of inorganic nanomaterials for nanohybrids formation -- 6.1 Introduction -- 6.1.1 Production of nanoparticles -- 6.1.2 Microbial nanohybrids -- 6.1.3 Nanohybrid materials for wastewater treatment with respect to microbes -- 6.2 Biosynthesis of Metal NPS with Different Microbes -- 6.2.1 Bacteria -- 6.2.2 Algae -- 6.2.3 Fungi -- 6.3 Feasibility of Microbe-Based Biogenic NPs for Wastewater Treatment -- 6.3.1 Use of biogenic NPs to treat wastewater -- 6.3.2 Biogenic inorganic NPs -- 6.3.2.1 Bio-Fe and Bio-Mn NPs -- 6.3.2.2 Bio-Pd NPs -- 6.3.2.3 Bio-Au and Bio-Ag NPs -- 6.3.2.4 Bio-bimetal NPs -- 6.3.2.5 Composite Bio-Me NPs -- 6.4 Conclusions -- Acknowledgement -- References -- Chapter 7 : Sustainable wastewater treatment using magnetic nanohybrids -- 7.1 Introduction -- 7.2 Source of Pollutants. | |
7.2.1 Ore extraction -- 7.2.2 Electroplating -- 7.2.3 Water pollution -- 7.2.3.1 Pharmaceutical waste -- 7.2.3.2 Dyes -- 7.2.4 Radionuclides -- 7.3 Sustainable Wastewater Treatment with Nanohybrids -- 7.4 Magnetic Nanohybrids Materials for Water Contaminant Removal -- 7.4.1 Preparation of magnetic nanohybrid materials -- 7.4.2 Magnetic nanohybrid development -- 7.4.3 Mechanism of adsorptive removal of pollutants using magnetic nanohybrid materials -- 7.5 Factors Influencing Adsorption by Magnetic Nanohybrid Adsorbent -- 7.6 Removal of Water Pollutants Based on Magnetic Nanohybrid Catalyst -- 7.6.1 Carbon-based magnetic nanohybrid adsorbents -- 7.6.1.1 Activated charcoal/biochar-based materials -- 7.6.1.2 Carbon nanotubes -- 7.6.1.3 Graphene-based nanoadsorbents -- 7.6.1.4 Chitosan-based magnetic nanohybrid catalyst -- 7.6.2 Metal-based magnetic nanohybrid catalyst -- 7.6.2.1 Zeolites -- 7.6.2.2 Multi-metals-based magnetic nanohybrid catalyst -- 7.7 Future Prospectives with Challenges -- Acknowledgements -- References -- Chapter 8 : Feasibility of nanomaterials to support electroactive microbes in nanobiohybrids -- 8.1 Introduction -- 8.2 Inherent Bottlenecks for Electron Transfer in Natural EAB Cells -- 8.3 Nanomaterial Selection for Constructing Efficient Nanobiohybrids -- 8.3.1 Favorable electrical conductivity of NMs -- 8.3.1.1 Metal/metal oxide-based NPs and conductive carbon-based NMs -- 8.3.1.2 Conductive organic nanopolymers -- 8.3.2 Large specific surface area of NMs -- 8.3.3 Photocatalysis capability of NMs -- 8.3.3.1 Metal-based semiconductor NPs -- 8.3.3.2 Carbon-based semiconductor NPs -- 8.3.4 NMs stimulate production of cellular components related to electron transfer. | |
8.3.4.1 Increased production of c-Cyts in the presence of NMs -- 8.3.4.2 Increased EPS production in the presence of NMs -- 8.3.5 Special functionalized NMs used for cytoprotection in engineered nanobiohybrids -- 8.3.5.1 Biomimetic inorganic NPs -- 8.3.5.2 Nano-hydrogels -- 8.3.5.3 Hybrid coordination NMs -- 8.3.5.4 Artificial nanoenzymes -- 8.4 Assembly Protocols and Synthetic Strategies Employed for Different Functional Nanobiohybrid Systems -- 8.4.1 Internal bioaugmentation on an individual cell scale -- 8.4.2 External bioaugmentation on an individual cell scale -- 8.4.3 External bioaugmentation on the biofilm scale -- 8.5 Future Directions -- 8.5.1 Present challenges for nanobiohybrid development -- 8.5.2 Outlook for nanobiohybrid development -- Acknowledgments -- References -- Part 3: Environmental Remediation Using NBs -- Chapter 9 : Nanobiohybrids: a promising approach for sensing diverse environmental water pollutants -- 9.1 Introduction -- 9.2 Importance of Nanomaterials in the Nanobiohybrids -- 9.3 Choice of Nanomaterial -- 9.3.1 Metallic and metal oxide nanostructures -- 9.3.2 Carbonaceous nanomaterials -- 9.3.3 Quantum dots -- 9.3.4 Polymers -- 9.4 Nanobiohybrid Types: Based on Recognition Elements -- 9.4.1 Proteins and peptides -- 9.4.2 Nucleic acids -- 9.4.3 Carbohydrates -- 9.4.4 Whole cells -- 9.5 Nanobiohybrid Sensor Types Based on Transduction Pathways -- 9.5.1 Electrochemical nanobiohybrid sensors -- 9.5.2 Optical nanobiohybrid sensors -- 9.5.3 Magnetic nanobiohybrid sensors -- 9.5.4 Gravimetric nanobiohybrid sensors -- 9.5.5 Calorimetric nanobiohybrid sensors -- 9.6 Conclusion -- References -- Chapter 10 : Unlocking the potential of nanobiohybrids to combat environmental pollution -- 10.1 Introduction. | |
10.1.1 Need for environmental bioremediation. | |
Sommario/riassunto: | This book, edited by Piet N.L. Lens and Priyanka Uddandarao, explores advanced techniques in wastewater treatment and energy recovery, focusing on integrated environmental technology. It provides an in-depth analysis of the use of nanotechnology and biotechnology in water purification and energy storage. The text discusses the synthesis of nanocatalysts, the role of electroactive bacteria, and the implications for environmental remediation. Aimed at researchers, students, and policymakers, it serves as a comprehensive resource on the intersection of nanoscience and environmental engineering, emphasizing the importance of sustainable solutions for pollution control and resource recovery. |
Titolo autorizzato: | Nanobiohybrids for Advanced Wastewater Treatment and Energy Recovery |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910768494903321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |