Vai al contenuto principale della pagina

Domain Generalization with Machine Learning in the NOvA Experiment / / by Andrew T.C. Sutton



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Sutton Andrew T. C Visualizza persona
Titolo: Domain Generalization with Machine Learning in the NOvA Experiment / / by Andrew T.C. Sutton Visualizza cluster
Pubblicazione: Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Edizione: 1st ed. 2023.
Descrizione fisica: 1 online resource (174 pages)
Disciplina: 539.72
Soggetto topico: Particles (Nuclear physics)
Particle accelerators
Measurement
Measuring instruments
Machine learning
Mathematical physics
Computer simulation
Particle Physics
Accelerator Physics
Measurement Science and Instrumentation
Machine Learning
Computational Physics and Simulations
Nota di contenuto: Chapter 1: Neutrinos: A Desperate Remedy -- Chapter 2. A Review of Neutrino Physics -- Chapter 3. The NOvA Experiment -- Chapter 4. Event Reconstruction -- Chapter 5. The 3-Flavor Analysis -- Chapter 6. A Long Short-Term Memory Neural Network -- Chapter 7. Domain Generalization by Adversarial Training -- Chapter 8. Conclusion.
Sommario/riassunto: This thesis presents significant advances in the use of neural networks to study the properties of neutrinos. Machine learning tools like neural networks (NN) can be used to identify the particle types or determine their energies in detectors such as those used in the NOvA neutrino experiment, which studies changes in a beam of neutrinos as it propagates approximately 800 km through the earth. NOvA relies heavily on simulations of the physics processes and the detector response; these simulations work well, but do not match the real experiment perfectly. Thus, neural networks trained on simulated datasets must include systematic uncertainties that account for possible imperfections in the simulation. This thesis presents the first application in HEP of adversarial domain generalization to a regression neural network. Applying domain generalization to problems with large systematic variations will reduce the impact of uncertainties while avoiding the risk of falsely constraining the phase space. Reducing the impact of systematic uncertainties makes NOvA analysis more robust, and improves the significance of experimental results.
Titolo autorizzato: Domain Generalization with Machine Learning in the NOvA Experiment  Visualizza cluster
ISBN: 3-031-43583-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910760294903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Springer Theses, Recognizing Outstanding Ph.D. Research, . 2190-5061