1.

Record Nr.

UNINA990007441020403321

Autore

Lange, Oskar <1904-1965>

Titolo

Economic development, planning and international cooperation / by Oscar Lange

Pubbl/distr/stampa

Cairo : C.B.E. Printing Press, 1961

Descrizione fisica

27 p. ; 24 cm

Locazione

FGBC

Collocazione

BUSTA 20[17] 25

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Collezione

Note generali

Central bank of Egypt

2.

Record Nr.

UNINA9910632875503321

Autore

Kuyper Abraham

Titolo

Het Calvinisme Oorsprong en Waarborg Onzer Constitutioneele Vrijheden : Een Nederlandsche Gedachte / / Abraham Kuyper

Pubbl/distr/stampa

Amsterdam : , : B. van der Land, , [1874]

Descrizione fisica

1 online resource (77 pages)

Disciplina

230.42

Soggetti

Calvinism

Lingua di pubblicazione

Olandese

Formato

Materiale a stampa

Livello bibliografico

Monografia



3.

Record Nr.

UNINA9910760294903321

Autore

Sutton Andrew T. C

Titolo

Domain Generalization with Machine Learning in the NOvA Experiment / / by Andrew T.C. Sutton

Pubbl/distr/stampa

Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023

ISBN

3-031-43583-4

Edizione

[1st ed. 2023.]

Descrizione fisica

1 online resource (174 pages)

Collana

Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190-5061

Disciplina

539.72

Soggetti

Particles (Nuclear physics)

Particle accelerators

Measurement

Measuring instruments

Machine learning

Mathematical physics

Computer simulation

Particle Physics

Accelerator Physics

Measurement Science and Instrumentation

Machine Learning

Computational Physics and Simulations

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Chapter 1: Neutrinos: A Desperate Remedy -- Chapter 2. A Review of Neutrino Physics -- Chapter 3. The NOvA Experiment -- Chapter 4. Event Reconstruction -- Chapter 5. The 3-Flavor Analysis -- Chapter 6. A Long Short-Term Memory Neural Network -- Chapter 7. Domain Generalization by Adversarial Training -- Chapter 8. Conclusion.

Sommario/riassunto

This thesis presents significant advances in the use of neural networks to study the properties of neutrinos. Machine learning tools like neural networks (NN) can be used to identify the particle types or determine their energies in detectors such as those used in the NOvA neutrino experiment, which studies changes in a beam of neutrinos as it



propagates approximately 800 km through the earth. NOvA relies heavily on simulations of the physics processes and the detector response; these simulations work well, but do not match the real experiment perfectly. Thus, neural networks trained on simulated datasets must include systematic uncertainties that account for possible imperfections in the simulation. This thesis presents the first application in HEP of adversarial domain generalization to a regression neural network. Applying domain generalization to problems with large systematic variations will reduce the impact of uncertainties while avoiding the risk of falselyconstraining the phase space. Reducing the impact of systematic uncertainties makes NOvA analysis more robust, and improves the significance of experimental results.