Vai al contenuto principale della pagina
Autore: | Grosser Michael |
Titolo: | On the foundations of nonlinear generalized functions I and II / / Michael Grosser [and three others] |
Pubblicazione: | Providence, Rhode Island : , : American Mathematical Society, , [2001] |
©2001 | |
Descrizione fisica: | 1 online resource (113 p.) |
Disciplina: | 510 s |
515/.782 | |
Soggetto topico: | Theory of distributions (Functional analysis) |
Soggetto genere / forma: | Electronic books. |
Note generali: | "September 2001, volume 153, number 729 (end of volume)". |
Nota di bibliografia: | Includes bibliographical references (pages 92-93). |
Nota di contenuto: | ""Chapter 8. Sheaf properties""""Chapter 9. Separating the basic definition from testing""; ""Chapter 10. Characterization results""; ""Chapter 11. Differential Equations""; ""Part 2. On the Foundations of Nonlinear Generalized Functions II""; ""Chapter 12. Introduction to Part 2""; ""Chapter 13. A simple condition equivalent to negligibility""; ""Chapter 14. Some more calculus""; ""Chapter 15. Non-injectivity of the canonical homomorphism from G[sup(d)](Ω) into G[sup(e)](Ω)""; ""15.1. Proof of the estimates (15.4)""; ""15.2. Proof of smoothness of P""; ""15.3. Proof of moderateness of P"" |
""15.4. Proof of P â?? N[sup(d)]""""15.5. Proof of P â?? N[sup(e)]""; ""Chapter 16. Classification of smooth Colombeau algebras between G[sup(d)](Ω) and G[sup(e)](Ω)""; ""16.1. The development leading from G[sup(e)](Ω) to G[sup(d)](Ω)""; ""16.2. Classification of test objects""; ""16.3. Classification of full smooth Colombeau algebras""; ""Chapter 17. The algebra G[sup(2)]; classification results""; ""Chapter 18. Concluding remarks""; ""Acknowledgments""; ""Bibliography"" | |
Titolo autorizzato: | Foundations of nonlinear generalized functions I and II |
ISBN: | 1-4704-0322-6 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910480948303321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |