02845nam 2200541 450 991048094830332120180731044909.01-4704-0322-6(CKB)3360000000464913(EBL)3114527(SSID)ssj0000973433(PQKBManifestationID)11553118(PQKBTitleCode)TC0000973433(PQKBWorkID)10959046(PQKB)10907064(MiAaPQ)EBC3114527(PPN)195416155(EXLCZ)99336000000046491320010427h20012001 uy| 0engur|n|---|||||txtccrOn the foundations of nonlinear generalized functions I and II /Michael Grosser [and three others]Providence, Rhode Island :American Mathematical Society,[2001]©20011 online resource (113 p.)Memoirs of the American Mathematical Society,0065-9266 ;number 729"September 2001, volume 153, number 729 (end of volume)".0-8218-2729-4 Includes bibliographical references (pages 92-93).""Chapter 8. Sheaf properties""""Chapter 9. Separating the basic definition from testing""; ""Chapter 10. Characterization results""; ""Chapter 11. Differential Equations""; ""Part 2. On the Foundations of Nonlinear Generalized Functions II""; ""Chapter 12. Introduction to Part 2""; ""Chapter 13. A simple condition equivalent to negligibility""; ""Chapter 14. Some more calculus""; ""Chapter 15. Non-injectivity of the canonical homomorphism from G[sup(d)](Ω) into G[sup(e)](Ω)""; ""15.1. Proof of the estimates (15.4)""; ""15.2. Proof of smoothness of P""; ""15.3. Proof of moderateness of P""""15.4. Proof of P â?? N[sup(d)]""""15.5. Proof of P â?? N[sup(e)]""; ""Chapter 16. Classification of smooth Colombeau algebras between G[sup(d)](Ω) and G[sup(e)](Ω)""; ""16.1. The development leading from G[sup(e)](Ω) to G[sup(d)](Ω)""; ""16.2. Classification of test objects""; ""16.3. Classification of full smooth Colombeau algebras""; ""Chapter 17. The algebra G[sup(2)]; classification results""; ""Chapter 18. Concluding remarks""; ""Acknowledgments""; ""Bibliography""Memoirs of the American Mathematical Society ;no. 729.Theory of distributions (Functional analysis)Electronic books.Theory of distributions (Functional analysis)510 s515/.782Grosser Michael57437MiAaPQMiAaPQMiAaPQBOOK9910480948303321Foundations of nonlinear generalized functions I and II377890UNINA