Vai al contenuto principale della pagina

Human-Inspired Balancing and Recovery Stepping for Humanoid Robots



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Kaul Lukas Sebastian Visualizza persona
Titolo: Human-Inspired Balancing and Recovery Stepping for Humanoid Robots Visualizza cluster
Pubblicazione: KIT Scientific Publishing, 2019
Descrizione fisica: 1 electronic resource (X, 235 p. p.)
Soggetto non controllato: Maschinelles Lernen
Balancing
Optimierung
Regelungstechnik
Machine learning
Balancieren
Control systems
Humanoide Robotik
Humanoid robotics
Optimization
Sommario/riassunto: Robustly maintaining balance on two legs is an important challenge for humanoid robots. The work presented in this book represents a contribution to this area. It investigates efficient methods for the decision-making from internal sensors about whether and where to step, several improvements to efficient whole-body postural balancing methods, and proposes and evaluates a novel method for efficient recovery step generation, leveraging human examples and simulation-based reinforcement learning.
Titolo autorizzato: Human-Inspired Balancing and Recovery Stepping for Humanoid Robots  Visualizza cluster
ISBN: 1000091605
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910346946503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui