Vai al contenuto principale della pagina
Autore: | Kaul Lukas Sebastian |
Titolo: | Human-Inspired Balancing and Recovery Stepping for Humanoid Robots |
Pubblicazione: | KIT Scientific Publishing, 2019 |
Descrizione fisica: | 1 electronic resource (X, 235 p. p.) |
Soggetto non controllato: | Maschinelles Lernen |
Balancing | |
Optimierung | |
Regelungstechnik | |
Machine learning | |
Balancieren | |
Control systems | |
Humanoide Robotik | |
Humanoid robotics | |
Optimization | |
Sommario/riassunto: | Robustly maintaining balance on two legs is an important challenge for humanoid robots. The work presented in this book represents a contribution to this area. It investigates efficient methods for the decision-making from internal sensors about whether and where to step, several improvements to efficient whole-body postural balancing methods, and proposes and evaluates a novel method for efficient recovery step generation, leveraging human examples and simulation-based reinforcement learning. |
Titolo autorizzato: | Human-Inspired Balancing and Recovery Stepping for Humanoid Robots |
ISBN: | 1000091605 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910346946503321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |