Vai al contenuto principale della pagina
Autore: | Wiley Matt |
Titolo: | Advanced R statistical programming and data models : analysis, machine learning, and visualization / / by Matt Wiley, Joshua F. Wiley |
Pubblicazione: | Berkeley, CA : , : Apress : , : Imprint : Apress, , 2019 |
Edizione: | 1st ed. 2019. |
Descrizione fisica: | 1 online resource (XX, 638 p. 207 illus., 127 illus. in color.) |
Disciplina: | 005.13 |
Soggetto topico: | R (Llenguatge de programació) |
Estadística matemàtica | |
Programming languages (Electronic computers) | |
Computer programming | |
Mathematical statistics | |
R (Computer program language) | |
Programming Languages, Compilers, Interpreters | |
Programming Techniques | |
Probability and Statistics in Computer Science | |
Persona (resp. second.): | WileyJoshua F |
Nota di contenuto: | 1 Univariate Data Visualization -- 2 Multivariate Data Visualization -- 3 Generalized Linear Models 1 -- 4 Generalized Linear Models 2 -- 5 Generalized Additive Models -- 6 Machine Learning: Introduction -- 7 Machine Learning: Unsupervised -- 8 Machine Learning: Supervised -- 9 Missing Data -- 10 Generalized Linear Mixed Models: Introduction -- 11 Generalized Linear Mixed Models: Linear -- 12 Generalized Linear Mixed Models: Advanced -- 13 Modeling IIV -- Bibliography. |
Sommario/riassunto: | Carry out a variety of advanced statistical analyses including generalized additive models, mixed effects models, multiple imputation, machine learning, and missing data techniques using R. Each chapter starts with conceptual background information about the techniques, includes multiple examples using R to achieve results, and concludes with a case study. Written by Matt and Joshua F. Wiley, Advanced R Statistical Programming and Data Models shows you how to conduct data analysis using the popular R language. You’ll delve into the preconditions or hypothesis for various statistical tests and techniques and work through concrete examples using R for a variety of these next-level analytics. This is a must-have guide and reference on using and programming with the R language. You will: Conduct advanced analyses in R including: generalized linear models, generalized additive models, mixed effects models, machine learning, and parallel processing Carry out regression modeling using R data visualization, linear and advanced regression, additive models, survival / time to event analysis Handle machine learning using R including parallel processing, dimension reduction, and feature selection and classification Address missing data using multiple imputation in R Work on factor analysis, generalized linear mixed models, and modeling intraindividual variability . |
Titolo autorizzato: | Advanced R Statistical Programming and Data Models |
ISBN: | 9781484228722 |
1-5231-5031-9 | |
1-4842-2872-3 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910338002703321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |