LEADER 04066nam 22006615 450 001 9910338002703321 005 20251202170510.0 010 $a9781523150311 010 $a1523150319 010 $a9781484228722 010 $a1484228723 024 7 $a10.1007/978-1-4842-2872-2 035 $a(CKB)4100000007656497 035 $a(DE-He213)978-1-4842-2872-2 035 $a(MiAaPQ)EBC5718497 035 $a(CaSebORM)9781484228722 035 $a(PPN)23500734X 035 $a(OCoLC)1091373907 035 $a(OCoLC)on1091373907 035 $a(EXLCZ)994100000007656497 100 $a20190220d2019 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdvanced R Statistical Programming and Data Models $eAnalysis, Machine Learning, and Visualization /$fby Matt Wiley, Joshua F. Wiley 205 $a1st ed. 2019. 210 1$aBerkeley, CA :$cApress :$cImprint: Apress,$d2019. 215 $a1 online resource (XX, 638 p. 207 illus., 127 illus. in color.) 311 1 $a9781484228715 311 1 $a1484228715 320 $aIncludes bibliographical references. 327 $a1 Univariate Data Visualization -- 2 Multivariate Data Visualization -- 3 Generalized Linear Models 1 -- 4 Generalized Linear Models 2 -- 5 Generalized Additive Models -- 6 Machine Learning: Introduction -- 7 Machine Learning: Unsupervised -- 8 Machine Learning: Supervised -- 9 Missing Data -- 10 Generalized Linear Mixed Models: Introduction -- 11 Generalized Linear Mixed Models: Linear -- 12 Generalized Linear Mixed Models: Advanced -- 13 Modeling IIV -- Bibliography. 330 $aCarry out a variety of advanced statistical analyses including generalized additive models, mixed effects models, multiple imputation, machine learning, and missing data techniques using R. Each chapter starts with conceptual background information about the techniques, includes multiple examples using R to achieve results, and concludes with a case study. Written by Matt and Joshua F. Wiley, Advanced R Statistical Programming and Data Models shows you how to conduct data analysis using the popular R language. You?ll delve into the preconditions or hypothesis for various statistical tests and techniques and work through concrete examples using R for a variety of these next-level analytics. This is a must-have guide and reference on using and programming with the R language. You will: Conduct advanced analyses in R including: generalized linear models, generalized additive models,mixed effects models, machine learning, and parallel processing Carry out regression modeling using R data visualization, linear and advanced regression, additive models, survival / time to event analysis Handle machine learning using R including parallel processing, dimension reduction, and feature selection and classification Address missing data using multiple imputation in R Work on factor analysis, generalized linear mixed models, and modeling intraindividual variability . 606 $aCompilers (Computer programs) 606 $aComputer programming 606 $aComputer science$xMathematics 606 $aMathematical statistics 606 $aCompilers and Interpreters 606 $aProgramming Techniques 606 $aProbability and Statistics in Computer Science 615 0$aCompilers (Computer programs). 615 0$aComputer programming. 615 0$aComputer science$xMathematics. 615 0$aMathematical statistics. 615 14$aCompilers and Interpreters. 615 24$aProgramming Techniques. 615 24$aProbability and Statistics in Computer Science. 676 $a005.13 700 $aWiley$b Matt$4aut$4http://id.loc.gov/vocabulary/relators/aut$0897297 702 $aWiley$b Joshua F.$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bUMI 801 1$bUMI 906 $aBOOK 912 $a9910338002703321 996 $aAdvanced R Statistical Programming and Data Models$92534295 997 $aUNINA