Vai al contenuto principale della pagina
Autore: | Yang Xin-She |
Titolo: | Engineering optimization [[electronic resource] ] : an introduction with metaheuristic applications / / Xin-She Yang |
Pubblicazione: | Hoboken, NJ, : Wiley, c2010 |
Descrizione fisica: | 1 online resource (377 p.) |
Disciplina: | 620.001/5196 |
Soggetto topico: | Heuristic programming |
Mathematical optimization | |
Engineering mathematics | |
Note generali: | Description based upon print version of record. |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | Engineering Optimization: An Introduction with Metaheuristic Applications; CONTENTS; List of Figures; Preface; Acknowledgments; Introduction; PART I FOUNDATIONS OF OPTIMIZATION AND ALGORITHMS; 1 A Brief History of Optimization; 1.1 Before 1900; 1.2 Twentieth Century; 1.3 Heuristics and Metaheuristics; Exercises; 2 Engineering Optimization; 2.1 Optimization; 2.2 Type of Optimization; 2.3 Optimization Algorithms; 2.4 Metaheuristics; 2.5 Order Notation; 2.6 Algorithm Complexity; 2.7 No Free Lunch Theorems; Exercises; 3 Mathematical Foundations; 3.1 Upper and Lower Bounds; 3.2 Basic Calculus |
3.3 Optimality3.3.1 Continuity and Smoothness; 3.3.2 Stationary Points; 3.3.3 Optimality Criteria; 3.4 Vector and Matrix Norms; 3.5 Eigenvalues and Definiteness; 3.5.1 Eigenvalues; 3.5.2 Definiteness; 3.6 Linear and Affine Functions; 3.6.1 Linear Functions; 3.6.2 Affine Functions; 3.6.3 Quadratic Form; 3.7 Gradient and Hessian Matrices; 3.7.1 Gradient; 3.7.2 Hessian; 3.7.3 Function approximations; 3.7.4 Optimality of multivariate functions; 3.8 Convexity; 3.8.1 Convex Set; 3.8.2 Convex Functions; Exercises; 4 Classic Optimization Methods I; 4.1 Unconstrained Optimization | |
4.2 Gradient-Based Methods4.2.1 Newton's Method; 4.2.2 Steepest Descent Method; 4.2.3 Line Search; 4.2.4 Conjugate Gradient Method; 4.3 Constrained Optimization; 4.4 Linear Programming; 4.5 Simplex Method; 4.5.1 Basic Procedure; 4.5.2 Augmented Form; 4.6 Nonlinear Optimization; 4.7 Penalty Method; 4.8 Lagrange Multipliers; 4.9 Karush-Kuhn-Tucker Conditions; Exercises; 5 Classic Optimization Methods II; 5.1 BFGS Method; 5.2 Nelder-Mead Method; 5.2.1 A Simplex; 5.2.2 Nelder-Mead Downhill Simplex; 5.3 Trust-Region Method; 5.4 Sequential Quadratic Programming; 5.4.1 Quadratic Programming | |
5.4.2 Sequential Quadratic ProgrammingExercises; 6 Convex Optimization; 6.1 KKT Conditions; 6.2 Convex Optimization Examples; 6.3 Equality Constrained Optimization; 6.4 Barrier Functions; 6.5 Interior-Point Methods; 6.6 Stochastic and Robust Optimization; Exercises; 7 Calculus of Variations; 7.1 Euler-Lagrange Equation; 7.1.1 Curvature; 7.1.2 Euler-Lagrange Equation; 7.2 Variations with Constraints; 7.3 Variations for Multiple Variables; 7.4 Optimal Control; 7.4.1 Control Problem; 7.4.2 Pontryagin's Principle; 7.4.3 Multiple Controls; 7.4.4 Stochastic Optimal Control; Exercises | |
8 Random Number Generators8.1 Linear Congruential Algorithms; 8.2 Uniform Distribution; 8.3 Other Distributions; 8.4 Metropolis Algorithms; Exercises; 9 Monte Carlo Methods; 9.1 Estimating π; 9.2 Monte Carlo Integration; 9.3 Importance of Sampling; Exercises; 10 Random Walk and Markov Chain; 10.1 Random Process; 10.2 Random Walk; 10.2.1 ID Random Walk; 10.2.2 Random Walk in Higher Dimensions; 10.3 Lévy Flights; 10.4 Markov Chain; 10.5 Markov Chain Monte Carlo; 10.5.1 Metropolis-Hastings Algorithms; 10.5.2 Random Walk; 10.6 Markov Chain and Optimisation; Exercises | |
PART II METAHEURISTIC ALGORITHMS | |
Sommario/riassunto: | An accessible introduction to metaheuristics and optimization, featuring powerful and modern algorithms for application across engineering and the sciences From engineering and computer science to economics and management science, optimization is a core component for problem solving. Highlighting the latest developments that have evolved in recent years, Engineering Optimization: An Introduction with Metaheuristic Applications outlines popular metaheuristic algorithms and equips readers with the skills needed to apply these techniques to their own optimization problems. With insigh |
Titolo autorizzato: | Engineering optimization |
ISBN: | 1-282-70777-9 |
9786612707773 | |
0-470-64042-1 | |
0-470-64041-3 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910140843303321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |