Autore: |
Wehrung, Friedrich
|
Titolo: |
Refinement monoids, equidecomposability types, and Boolean inverse semigroups / Friedrich Wehrung
|
Pubblicazione: |
[Cham], : Springer, 2017 |
Titolo uniforme: |
Refinement monoids, equidecomposability types, and Boolean inverse semigroups
|
Descrizione fisica: |
VII, 240 p. : ill. ; 24 cm |
Soggetto topico: |
06E15 - Stone spaces (Boolean spaces) and related structures [MSC 2020] |
|
06F05 - Ordered semigroups and monoids [MSC 2020] |
|
08Axx - Algebraic structures [MSC 2020] |
|
08B10 - Congruence modularity, congruence distributivity [MSC 2020] |
|
08Cxx - Other classes of algebras [MSC 2020] |
|
16E20 - Grothendieck groups, $K$-theory, etc. [MSC 2020] |
|
16E50 - von Neumann regular rings and generalizations (associative algebraic aspects) [MSC 2020] |
|
18A30 - Limits and colimits (products, sums, directed limits, pushouts, fiber products, equalizers, kernels, ends and coends, etc.) [MSC 2020] |
|
19A31 - $K_0$ of group rings and orders [MSC 2020] |
|
19A49 - $K_0$ of other rings [MSC 2020] |
|
20M14 - Commutative semigroups [MSC 2020] |
|
20M18 - Inverse semigroups [MSC 2020] |
|
20M25 - Semigroup rings, multiplicative semigroups of rings [MSC 2020] |
|
28B10 - Group- or semigroup-valued set functions, measures and integrals [MSC 2020] |
|
43A07 - Means on groups, semigroups, etc.; amenable groups [MSC 2020] |
|
46L80 - $K$-theory and operator algebras (including cyclic theory) [MSC 2020] |
Soggetto non controllato: |
Additive homomorphism |
|
Bias |
|
Boolean |
|
Commutative |
|
Distributive |
|
Equidecomposable |
|
Inverse |
|
Refinement Monoid |
|
Semigroups |
|
V-measure |
Titolo autorizzato: |
Refinement monoids, equidecomposability types, and Boolean inverse semigroups |
ISBN: |
978-33-19-61599-8 |
Formato: |
Materiale a stampa |
Livello bibliografico |
Monografia |
Lingua di pubblicazione: |
Inglese |
Record Nr.: | VAN00110705 |
Lo trovi qui: | Univ. Vanvitelli |
Localizzazioni e accesso elettronico |
http://dx.doi.org/10.1007/978-3-319-61599-8 |
Opac: |
Controlla la disponibilità qui |