LEADER 03251nam0 2200613 i 450 001 VAN00110705 005 20240806100742.898 010 $a978-33-19-61599-8 100 $a20170914d2017 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aRefinement monoids, equidecomposability types, and Boolean inverse semigroups$fFriedrich Wehrung 210 $a[Cham]$cSpringer$d2017 215 $aVII, 240 p.$cill.$d24 cm 461 1$1001VAN00102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v2188 500 1$3VAN00234305$aRefinement monoids, equidecomposability types, and Boolean inverse semigroups$91466433 606 $a06E15$xStone spaces (Boolean spaces) and related structures [MSC 2020]$3VANC029542$2MF 606 $a06F05$xOrdered semigroups and monoids [MSC 2020]$3VANC031189$2MF 606 $a08Axx$xAlgebraic structures [MSC 2020]$3VANC022419$2MF 606 $a08B10$xCongruence modularity, congruence distributivity [MSC 2020]$3VANC022276$2MF 606 $a08Cxx$xOther classes of algebras [MSC 2020]$3VANC033170$2MF 606 $a16E20$xGrothendieck groups, $K$-theory, etc. [MSC 2020]$3VANC019736$2MF 606 $a16E50$xvon Neumann regular rings and generalizations (associative algebraic aspects) [MSC 2020]$3VANC033171$2MF 606 $a18A30$xLimits and colimits (products, sums, directed limits, pushouts, fiber products, equalizers, kernels, ends and coends, etc.) [MSC 2020]$3VANC029032$2MF 606 $a19A31$x$K_0$ of group rings and orders [MSC 2020]$3VANC030740$2MF 606 $a19A49$x$K_0$ of other rings [MSC 2020]$3VANC033172$2MF 606 $a20M14$xCommutative semigroups [MSC 2020]$3VANC029151$2MF 606 $a20M18$xInverse semigroups [MSC 2020]$3VANC023844$2MF 606 $a20M25$xSemigroup rings, multiplicative semigroups of rings [MSC 2020]$3VANC033168$2MF 606 $a28B10$xGroup- or semigroup-valued set functions, measures and integrals [MSC 2020]$3VANC033169$2MF 606 $a43A07$xMeans on groups, semigroups, etc.; amenable groups [MSC 2020]$3VANC021706$2MF 606 $a46L80$x$K$-theory and operator algebras (including cyclic theory) [MSC 2020]$3VANC031147$2MF 610 $aAdditive homomorphism$9KW:K 610 $aBias$9KW:K 610 $aBoolean$9KW:K 610 $aCommutative$9KW:K 610 $aDistributive$9KW:K 610 $aEquidecomposable$9KW:K 610 $aInverse$9KW:K 610 $aRefinement Monoid$9KW:K 610 $aSemigroups$9KW:K 610 $aV-measure$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aWehrung$bFriedrich$3VANV071072$0512591 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240906$gRICA 856 4 $uhttp://dx.doi.org/10.1007/978-3-319-61599-8$zhttp://dx.doi.org/10.1007/978-3-319-61599-8 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00110705 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book $e08LNM2188 20170914 996 $aRefinement monoids, equidecomposability types, and Boolean inverse semigroups$91466433 997 $aUNICAMPANIA