Vai al contenuto principale della pagina

Inorganic controlled release technology : materials and concepts for advanced drug formulation / / Xiang Zhang, Mark Cresswell



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Zhang Xiang Visualizza persona
Titolo: Inorganic controlled release technology : materials and concepts for advanced drug formulation / / Xiang Zhang, Mark Cresswell Visualizza cluster
Pubblicazione: Oxford, [England] ; ; Waltham, Massachusetts : , : Butterworth-Heinemann, , 2016
©2016
Descrizione fisica: 1 online resource (264 p.)
Disciplina: 664.024
Soggetto topico: Controlled release technology
Persona (resp. second.): CresswellMark
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Front Cover; Inorganic Controlled Release Technology: Materials and Concepts for Advanced Drug Formulation; Copyright; Contents; About the Author; Preface; Acknowledgments; Key Features; Chapter 1: Materials for Inorganic Controlled Release Technology; 1.1. Introduction; 1.2. Comparison between Organic and Inorganic CRT; 1.3. Materials Chemistry and Processing Technology; 1.3.1. Fusion-Based Approach to Making Water-Soluble Glasses; 1.3.2. Sol-Gel Approach; 1.3.3. Surfactant Template Approach for Mesoporous Silica; 1.4. Materials Physics and Drug-Loaded Micro/Nanostructure; References
Chapter 2: Materials Fundamentals of Drug Controlled Release2.1. Introduction of Materials Nanostructure; 2.1.1. The Structure of Amorphous Materials; 2.1.2. Theories of Amorphous Materials; 2.1.2.1. Glass Transition; 2.1.2.2. Free Volume Theory; 2.2. API Distribution Within Inorganic Matrices; 2.2.1. Traditional API Distribution; 2.2.2. API Distribution Within inorganic CRT Matrices; 2.3. Basic Understanding of Potential Molecular Interactions; 2.3.1. Classical API Excipients; 2.3.2. Interactions Between API and inorganic CRT Matrix Systems; 2.3.3. The Surface Chemistry of Silica
2.3.4. Molecular Interaction with Directionally Templated Mesoporous Silica Systems2.3.5. Towards Molecular Dispersion and Distribution; 2.3.6. Molecular Interaction Sites on Sol-Gel Silica and Phosphate Glass; 2.3.7. Dissolution of Phosphate Glass; 2.3.8. Glass Formulation for inorganic CRT; 2.4. Theory and Practical Modelling of Drug Controlled Release Kinetics; References; Further Reading; Chapter 3: Materials Characterization of Inorganic Controlled Release; 3.1. Introduction; 3.2. Chemical Analysis; 3.2.1. X-Ray Fluorescence; 3.2.1.1. Case Study: Contamination Investigation
3.2.2. Inductively Coupled Plasma Mass Spectrometry3.2.2.1. Case Study: Controlled Release of Strontium from P-glass; 3.2.2.2. Case Study: Detection of Cobalt and Chromium Ions in Patients with Metal-on-Metal Implants; 3.2.3. FTIR; 3.2.3.1. Case Study: FTIR Study of Silanol Groups in Silica, Slica-Alumina, and Zeolites; 3.2.3.2. Case Study: Quantification of Bridging and Non-bridging SiO as a Function of SiO2 % by FTIR; 3.2.4. X-Ray Photoelectron Spectroscopy (XPS)-Surface Chemistry 1; 3.2.4.1. Case Study: XPS Study on SiOSi Bridging Energy Variation
3.2.5. Secondary Ion Mass Spectrometry (SIMS)-Surface Chemistry 23.2.5.1. Case Study: Investigation of the Surface Chemistry of a Bioglass-Polymer Hybrid Composite; 3.3. Physical Property Analysis; 3.3.1. X-Ray Diffraction; 3.3.1.1. Case Study: Characterization of a Calcium Hydroxyapatite Reference Material5; 3.3.1.2. Case Study: Characterization of Amorphous and crystalline Materials; 3.3.2. Nanoporosity Characterization; 3.3.2.1. Case Study; 3.4. Microscopy; 3.4.1. SEM, BEM and EDX; 3.4.1.1. Case Study: drug-loaded sol-gel glass particles; 3.4.2. TEM
3.4.2.1. Case Study: drug-loaded mesoporous silica
Sommario/riassunto: Inorganic Controlled Release Technology: Materials and Concepts for Advanced Drug Formulation provides a practical guide to the use and applications of inorganic controlled release technology (iCRT) for drug delivery and other healthcare applications, focusing on newly developed inorganic materials such as bioresorbable glasses and bioceramics. The use of these materials is introduced for a wide range of applications that cover inorganic drug delivery systems for new drug development and the reformulation of existing drugs. The book describes basic concepts, principles, and industrial practic
Titolo autorizzato: Inorganic controlled release technology  Visualizza cluster
ISBN: 0-08-100006-5
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910828159503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui