Vai al contenuto principale della pagina

Fundamentals of terahertz devices and applications / / editor, Dimitris Pavlidis



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Fundamentals of terahertz devices and applications / / editor, Dimitris Pavlidis Visualizza cluster
Pubblicazione: Hoboken, NJ : , : John Wiley & Sons, Incorporated, , [2021]
©2021
Descrizione fisica: 1 online resource (579 pages)
Disciplina: 621.38133
Soggetto topico: Terahertz technology
Soggetto genere / forma: Electronic books.
Persona (resp. second.): PavlidisDimitris
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover -- Title Page -- Copyright Page -- Contents -- About the Editor -- List of Contributors -- About the Companion Website -- Chapter 1 Introduction to THz Technologies -- Chapter 2 Integrated Silicon Lens Antennas at Submillimeter-wave Frequencies -- 2.1 Introduction -- 2.2 Elliptical Lens Antennas -- 2.2.1 Elliptical Lens Synthesis -- 2.2.2 Radiation of Elliptical Lenses -- 2.2.2.1 Transmission Function T(Q) -- 2.2.2.2 Spreading Factor S(Q) -- 2.2.2.3 Equivalent Current Distribution and Far-field Calculation -- 2.2.2.4 Lens Reflection Efficiency -- 2.3 Extended Semi-hemispherical Lens Antennas -- 2.3.1 Radiation of Extended Semi-hemispherical Lenses -- 2.4 Shallow Lenses Excited by Leaky Wave/Fabry-Perot Feeds -- 2.4.1 Analysis of the Leaky-wave Propagation Constant -- 2.4.2 Primary Fields Radiated by a Leaky-wave Antenna Feed on an Infinite Medium -- 2.4.3 Shallow-lens Geometry Optimization -- 2.5 Fly-eye Antenna Array -- 2.5.1 Silicon DRIE Micromachining Process at Submillimeter-wave Frequencies -- 2.5.1.1 Fabrication of Silicon Lenses Using DRIE -- 2.5.1.2 Surface Accuracy -- 2.5.2 Examples of Fabricated Antennas -- Exercises -- Exercise 1: Derivation of the Transmission Coefficients and Lens Critical Angle -- Exercise 2 -- Exercise 3 -- References -- Chapter 3 Photoconductive THz Sources Driven at 1550 nm -- 3.1 Introduction -- 3.1.1 Overview of THz Photoconductive Sources -- 3.1.2 Lasers and Fiber Optics -- 3.2 1550-nm THz Photoconductive Sources -- 3.2.1 Epitaxial Materials -- 3.2.1.1 Bandgap Engineering -- 3.2.1.2 Low-Temperature Growth -- 3.2.2 Device Types and Modes of Operation -- 3.2.3 Analysis of THz Photoconductive Sources -- 3.2.3.1 PC-Switch Analysis -- 3.2.3.2 Photomixer Analysis -- 3.2.4 Practical Issues -- 3.2.4.1 Contact Effects -- 3.2.4.2 Thermal Effects -- 3.2.4.3 Circuit Limitations -- 3.3 THz Metrology.
3.3.1 Power Measurements -- 3.3.1.1 A Traceable Power Sensor -- 3.3.1.2 Exemplary THz Power Measurement Exercise -- 3.3.1.3 Other Sources of Error -- 3.3.2 Frequency Metrology -- 3.4 THz Antenna Coupling -- 3.4.1 Fundamental Principles -- 3.4.2 Planar Antennas on Dielectric Substrates -- 3.4.2.1 Input Impedance -- 3.4.2.2 ÄEIRP (Increase in the EIRP of the Transmitting Antenna) -- 3.4.2.3 G/T or Aeff/T -- 3.4.3 Estimation of Power Coupling Factor -- 3.4.4 Exemplary THz Planar Antennas -- 3.4.4.1 Resonant Antennas -- 3.4.4.2 Quick Survey of Self-complementary Antennas -- 3.5 State of the Art in 1550-nm Photoconductive Sources -- 3.5.1 1550-nm MSM Photoconductive Switches -- 3.5.1.1 Material and Device Design -- 3.5.1.2 THz Performance -- 3.5.2 1550-nm Photodiode CW (Photomixer) Sources -- 3.5.2.1 Material and Device Design -- 3.5.2.2 THz Performance -- 3.6 Alternative 1550-nm THz Photoconductive Sources -- 3.6.1 Fe-Doped InGaAs -- 3.6.2 ErAs Nanoparticles in GaAs: Extrinsic Photoconductivity -- 3.7 System Applications -- 3.7.1 Comparison Between Pulsed and CW THz Systems -- 3.7.1.1 Device Aspects -- 3.7.1.2 Systems Aspects -- 3.7.2 Wireless Communications -- 3.7.3 THz Spectroscopy -- 3.7.3.1 Time vs Frequency Domain Systems -- 3.7.3.2 Analysis of Frequency Domain Systems: Amplitude and Phase Modulation -- Exercises (1-4) -- Exercises (5-8) THz Interaction with Matter -- Exercises (9-12) Antennas, Links, and Beams -- Exercises (13-15) Planar Antennas -- Exercises (16-19) Device Noise, System Noise, and Dynamic Range -- Exercises (20-22) Ultrafast Photoconductivity and Photodiodes -- Explanatory Notes (see superscripts in text) -- References -- Chapter 4 THz Photomixers -- 4.1 Introduction -- 4.2 Photomixing Basics -- 4.2.1 Photomixing Principle -- 4.2.2 Historical Background -- 4.3 Modeling THz Photomixers -- 4.3.1 Photoconductors.
4.3.1.1 Photocurrent Generation -- 4.3.1.2 Electrical Model -- 4.3.1.3 Efficiency and Maximum Power -- 4.3.2 Photodiode -- 4.3.2.1 PIN photodiodes -- 4.3.2.2 Uni-Traveling-Carrier Photodiodes -- 4.3.2.3 Photocurrent Generation -- 4.3.2.4 Electrical Model and Output Power -- 4.3.3 Frequency Down-conversion Using Photomixers -- 4.3.3.1 Electrical Model: Conversion Loss -- 4.4 Standard Photomixing Devices -- 4.4.1 Planar Photoconductors -- 4.4.1.1 Intrinsic Limitation -- 4.4.2 UTC Photodiodes -- 4.4.2.1 Backside Illuminated UTC Photodiodes -- 4.4.2.2 Waveguide-fed UTC Photodiodes -- 4.5 Optical Cavity Based Photomixers -- 4.5.1 LT-GaAs Photoconductors -- 4.5.1.1 Optical Modeling -- 4.5.1.2 Experimental Validation -- 4.5.2 UTC Photodiodes -- 4.5.2.1 Nano Grid Top Contact Electrodes -- 4.5.2.2 UTC Photodiodes Using Nano-Grid Top Contact Electrodes -- 4.5.2.3 Photoresponse Measurement -- 4.5.2.4 THz Power Generation by Photomixing -- 4.6 THz Antennas -- 4.6.1 Planar Antennas -- 4.6.2 Micromachined Antennas -- 4.7 Characterization of Photomixing Devices -- 4.7.1 On Wafer Characterization -- 4.7.2 Free Space Characterization -- Exercises -- Exercise A. Photodetector Theory -- Exercise B. Photomixing Model -- 1. Ultrafast Photoconductor -- 2. UTC Photodiode -- Exercise C. Antennas -- References -- Chapter 5 Plasmonics-enhanced Photoconductive Terahertz Devices -- 5.1 Introduction -- 5.2 Photoconductive Antennas -- 5.2.1 Photoconductors for THz Operation -- 5.2.2 Photoconductive THz Emitters -- 5.2.2.1 Pulsed THz Emitters -- 5.2.2.2 Continuous-wave THz Emitters -- 5.2.3 Photoconductive THz Detectors -- 5.2.4 Common Photoconductors and Antennas for Photoconductive THz Devices -- 5.2.4.1 Choice of Photoconductor -- 5.2.4.2 Choice of Antenna -- 5.3 Plasmonics-enhanced Photoconductive Antennas -- 5.3.1 Fundamentals of Plasmonics.
5.3.2 Plasmonics for Enhancing Performance of Photoconductive THz Devices -- 5.3.2.1 Principles of Plasmonic Enhancement -- 5.3.2.2 Design Considerations for Plasmonic Nanostructures -- 5.3.3 State-of-the-art Plasmonics-enhanced Photoconductive THz Devices -- 5.3.3.1 Photoconductive THz Devices with Plasmonic Light Concentrators -- 5.3.3.2 Photoconductive THz Devices with Plasmonic Contact Electrodes -- 5.3.3.3 Large Area Plasmonic Photoconductive Nanoantenna Arrays -- 5.3.3.4 Plasmonic Photoconductive THz Devices with Optical Nanocavities -- 5.4 Conclusion and Outlook -- Exercises -- References -- Chapter 6 Terahertz Quantum Cascade Lasers -- 6.1 Introduction -- 6.2 Fundamentals of Intersubband Transitions -- 6.3 Active Material Design -- 6.4 Optical Waveguides and Cavities -- 6.5 State-of-the-Art Performance and Limitations -- 6.6 Novel Materials Systems -- 6.6.1 III-Nitride Quantum Wells -- 6.6.2 SiGe Quantum Wells -- 6.7 Conclusion -- Acknowledgments -- Exercises -- References -- Chapter 7 Advanced Devices Using Two-Dimensional Layer Technology -- 7.1 Graphene-Based THz Devices -- 7.1.1 THz Properties of Graphene -- 7.1.2 How to Simulate and Model Graphene? -- 7.1.3 Terahertz Device Applications of Graphene -- 7.1.3.1 Modulators -- 7.1.3.2 Active Filters -- 7.1.3.3 Phase Modulation in Graphene-Based Metamaterials -- 7.2 TMD Based THz Devices -- 7.3 Applications -- Exercises -- Exercise 1 Computation of the Optical Conductivity of Graphene -- Exercise 2 Terahertz Transmission Through a 2D Material Layer Placed at an Optical Interface -- Exercise 3 Transfer Matrix Approach for Multi-layer Transmission Problems -- Exercise 4 A Condition for Perfect Absorption -- Exercise 5 Terahertz Plasmon Resonances in Periodically Patterned Graphene Disk Arrays -- Exercise 6 Electron Plasma Waves in Gated Graphene.
Exercise 7 Equivalent Circuit Modeling of 2D Material-Loaded Frequency Selective Surfaces -- Exercise 8 Maximum Terahertz Absorption in 2D Material-Loaded Frequency Selective Surfaces -- References -- Chapter 8 THz Plasma Field Effect Transistor Detectors -- 8.1 Introduction -- 8.2 Field Effect Transistors (FETs) and THz Plasma Oscillations -- 8.2.1 Dispersion of Plasma Waves in FETs -- 8.2.2 THz Detection by an FET -- 8.2.2.1 Resonant Detection -- 8.2.2.2 Broadband Detection -- 8.2.2.3 Enhancement by DC Drain Current -- 8.3 THz Detectors Based on Silicon FETs -- 8.4 Terahertz Detection by Graphene Plasmonic FETs -- 8.5 Terahertz Detection in Black-Phosphorus Nano-Transistors -- 8.6 Diamond Plasmonic THz Detectors -- 8.7 Conclusion -- Exercises -- Exercises 1-2 -- Exercises 3-10 -- Exercises 11-13 -- References -- Chapter 9 Signal Generation by Diode Frequency Multiplication -- 9.1 Introduction -- 9.2 Bridging the Microwave to Photonics Gap with Terahertz Frequency Multipliers -- 9.3 A Practical Approach to the Design of Frequency Multipliers -- 9.3.1 Frequency Multiplier Versus Comb Generator -- 9.3.2 Frequency Multiplier Ideal Matching Network and Ideal Device Performance -- 9.3.3 Symmetry at Device Level Versus Symmetry at Circuit Level -- 9.3.4 Classic Balanced Frequency Doublers -- 9.3.4.1 General Circuit Description -- 9.3.4.2 Necessary Condition to Balance the Circuit -- 9.3.5 Balanced Frequency Triplers with an Anti-Parallel Pair of Diodes -- 9.3.6 Multi-Anode Frequency Triplers in a Virtual Loop Configuration -- 9.3.6.1 General Circuit Description -- 9.3.6.2 Necessary Condition to Balance the Circuit -- 9.3.7 Multiplier Design Optimization -- 9.3.7.1 General Design Methodology -- 9.3.7.2 Nonlinear Modeling of the Schottky Diode Barrier -- 9.3.7.3 3D Modeling of the Extrinsic Structure of the Diodes.
9.3.7.4 Modeling and Optimization of the Diode Cell.
Sommario/riassunto: "The book will address fundamentals of THz devices and their applications. THz technology relates to applications that span in frequency from a few hundred GHz to more than 1000 GHz. They require devices for signal generation, detection and treatment the characteristics of which have been reported in various publications but their in-depth understanding is often lacking or requires the consultation of multiple references. It is the purpose of this book to address the above topics in a way that both the beginner and advanced reader can obtain a better understanding of device operation and use"-- Provided by publisher
Titolo autorizzato: Fundamentals of terahertz devices and applications  Visualizza cluster
ISBN: 1-119-46073-5
1-119-46074-3
1-119-46072-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910555277903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui