11311nam 2200517 450 991055527790332120220926163020.01-119-46073-51-119-46074-31-119-46072-7(CKB)4100000011981571(MiAaPQ)EBC6665715(Au-PeEL)EBL6665715(OCoLC)1259592701(EXLCZ)99410000001198157120220323d2021 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierFundamentals of terahertz devices and applications /editor, Dimitris PavlidisHoboken, NJ:John Wiley & Sons, Incorporated,[2021]©20211 online resource (579 pages)1-119-46071-9 Includes bibliographical references and index.Cover -- Title Page -- Copyright Page -- Contents -- About the Editor -- List of Contributors -- About the Companion Website -- Chapter 1 Introduction to THz Technologies -- Chapter 2 Integrated Silicon Lens Antennas at Submillimeter-wave Frequencies -- 2.1 Introduction -- 2.2 Elliptical Lens Antennas -- 2.2.1 Elliptical Lens Synthesis -- 2.2.2 Radiation of Elliptical Lenses -- 2.2.2.1 Transmission Function T(Q) -- 2.2.2.2 Spreading Factor S(Q) -- 2.2.2.3 Equivalent Current Distribution and Far-field Calculation -- 2.2.2.4 Lens Reflection Efficiency -- 2.3 Extended Semi-hemispherical Lens Antennas -- 2.3.1 Radiation of Extended Semi-hemispherical Lenses -- 2.4 Shallow Lenses Excited by Leaky Wave/Fabry-Perot Feeds -- 2.4.1 Analysis of the Leaky-wave Propagation Constant -- 2.4.2 Primary Fields Radiated by a Leaky-wave Antenna Feed on an Infinite Medium -- 2.4.3 Shallow-lens Geometry Optimization -- 2.5 Fly-eye Antenna Array -- 2.5.1 Silicon DRIE Micromachining Process at Submillimeter-wave Frequencies -- 2.5.1.1 Fabrication of Silicon Lenses Using DRIE -- 2.5.1.2 Surface Accuracy -- 2.5.2 Examples of Fabricated Antennas -- Exercises -- Exercise 1: Derivation of the Transmission Coefficients and Lens Critical Angle -- Exercise 2 -- Exercise 3 -- References -- Chapter 3 Photoconductive THz Sources Driven at 1550 nm -- 3.1 Introduction -- 3.1.1 Overview of THz Photoconductive Sources -- 3.1.2 Lasers and Fiber Optics -- 3.2 1550-nm THz Photoconductive Sources -- 3.2.1 Epitaxial Materials -- 3.2.1.1 Bandgap Engineering -- 3.2.1.2 Low-Temperature Growth -- 3.2.2 Device Types and Modes of Operation -- 3.2.3 Analysis of THz Photoconductive Sources -- 3.2.3.1 PC-Switch Analysis -- 3.2.3.2 Photomixer Analysis -- 3.2.4 Practical Issues -- 3.2.4.1 Contact Effects -- 3.2.4.2 Thermal Effects -- 3.2.4.3 Circuit Limitations -- 3.3 THz Metrology.3.3.1 Power Measurements -- 3.3.1.1 A Traceable Power Sensor -- 3.3.1.2 Exemplary THz Power Measurement Exercise -- 3.3.1.3 Other Sources of Error -- 3.3.2 Frequency Metrology -- 3.4 THz Antenna Coupling -- 3.4.1 Fundamental Principles -- 3.4.2 Planar Antennas on Dielectric Substrates -- 3.4.2.1 Input Impedance -- 3.4.2.2 ÄEIRP (Increase in the EIRP of the Transmitting Antenna) -- 3.4.2.3 G/T or Aeff/T -- 3.4.3 Estimation of Power Coupling Factor -- 3.4.4 Exemplary THz Planar Antennas -- 3.4.4.1 Resonant Antennas -- 3.4.4.2 Quick Survey of Self-complementary Antennas -- 3.5 State of the Art in 1550-nm Photoconductive Sources -- 3.5.1 1550-nm MSM Photoconductive Switches -- 3.5.1.1 Material and Device Design -- 3.5.1.2 THz Performance -- 3.5.2 1550-nm Photodiode CW (Photomixer) Sources -- 3.5.2.1 Material and Device Design -- 3.5.2.2 THz Performance -- 3.6 Alternative 1550-nm THz Photoconductive Sources -- 3.6.1 Fe-Doped InGaAs -- 3.6.2 ErAs Nanoparticles in GaAs: Extrinsic Photoconductivity -- 3.7 System Applications -- 3.7.1 Comparison Between Pulsed and CW THz Systems -- 3.7.1.1 Device Aspects -- 3.7.1.2 Systems Aspects -- 3.7.2 Wireless Communications -- 3.7.3 THz Spectroscopy -- 3.7.3.1 Time vs Frequency Domain Systems -- 3.7.3.2 Analysis of Frequency Domain Systems: Amplitude and Phase Modulation -- Exercises (1-4) -- Exercises (5-8) THz Interaction with Matter -- Exercises (9-12) Antennas, Links, and Beams -- Exercises (13-15) Planar Antennas -- Exercises (16-19) Device Noise, System Noise, and Dynamic Range -- Exercises (20-22) Ultrafast Photoconductivity and Photodiodes -- Explanatory Notes (see superscripts in text) -- References -- Chapter 4 THz Photomixers -- 4.1 Introduction -- 4.2 Photomixing Basics -- 4.2.1 Photomixing Principle -- 4.2.2 Historical Background -- 4.3 Modeling THz Photomixers -- 4.3.1 Photoconductors.4.3.1.1 Photocurrent Generation -- 4.3.1.2 Electrical Model -- 4.3.1.3 Efficiency and Maximum Power -- 4.3.2 Photodiode -- 4.3.2.1 PIN photodiodes -- 4.3.2.2 Uni-Traveling-Carrier Photodiodes -- 4.3.2.3 Photocurrent Generation -- 4.3.2.4 Electrical Model and Output Power -- 4.3.3 Frequency Down-conversion Using Photomixers -- 4.3.3.1 Electrical Model: Conversion Loss -- 4.4 Standard Photomixing Devices -- 4.4.1 Planar Photoconductors -- 4.4.1.1 Intrinsic Limitation -- 4.4.2 UTC Photodiodes -- 4.4.2.1 Backside Illuminated UTC Photodiodes -- 4.4.2.2 Waveguide-fed UTC Photodiodes -- 4.5 Optical Cavity Based Photomixers -- 4.5.1 LT-GaAs Photoconductors -- 4.5.1.1 Optical Modeling -- 4.5.1.2 Experimental Validation -- 4.5.2 UTC Photodiodes -- 4.5.2.1 Nano Grid Top Contact Electrodes -- 4.5.2.2 UTC Photodiodes Using Nano-Grid Top Contact Electrodes -- 4.5.2.3 Photoresponse Measurement -- 4.5.2.4 THz Power Generation by Photomixing -- 4.6 THz Antennas -- 4.6.1 Planar Antennas -- 4.6.2 Micromachined Antennas -- 4.7 Characterization of Photomixing Devices -- 4.7.1 On Wafer Characterization -- 4.7.2 Free Space Characterization -- Exercises -- Exercise A. Photodetector Theory -- Exercise B. Photomixing Model -- 1. Ultrafast Photoconductor -- 2. UTC Photodiode -- Exercise C. Antennas -- References -- Chapter 5 Plasmonics-enhanced Photoconductive Terahertz Devices -- 5.1 Introduction -- 5.2 Photoconductive Antennas -- 5.2.1 Photoconductors for THz Operation -- 5.2.2 Photoconductive THz Emitters -- 5.2.2.1 Pulsed THz Emitters -- 5.2.2.2 Continuous-wave THz Emitters -- 5.2.3 Photoconductive THz Detectors -- 5.2.4 Common Photoconductors and Antennas for Photoconductive THz Devices -- 5.2.4.1 Choice of Photoconductor -- 5.2.4.2 Choice of Antenna -- 5.3 Plasmonics-enhanced Photoconductive Antennas -- 5.3.1 Fundamentals of Plasmonics.5.3.2 Plasmonics for Enhancing Performance of Photoconductive THz Devices -- 5.3.2.1 Principles of Plasmonic Enhancement -- 5.3.2.2 Design Considerations for Plasmonic Nanostructures -- 5.3.3 State-of-the-art Plasmonics-enhanced Photoconductive THz Devices -- 5.3.3.1 Photoconductive THz Devices with Plasmonic Light Concentrators -- 5.3.3.2 Photoconductive THz Devices with Plasmonic Contact Electrodes -- 5.3.3.3 Large Area Plasmonic Photoconductive Nanoantenna Arrays -- 5.3.3.4 Plasmonic Photoconductive THz Devices with Optical Nanocavities -- 5.4 Conclusion and Outlook -- Exercises -- References -- Chapter 6 Terahertz Quantum Cascade Lasers -- 6.1 Introduction -- 6.2 Fundamentals of Intersubband Transitions -- 6.3 Active Material Design -- 6.4 Optical Waveguides and Cavities -- 6.5 State-of-the-Art Performance and Limitations -- 6.6 Novel Materials Systems -- 6.6.1 III-Nitride Quantum Wells -- 6.6.2 SiGe Quantum Wells -- 6.7 Conclusion -- Acknowledgments -- Exercises -- References -- Chapter 7 Advanced Devices Using Two-Dimensional Layer Technology -- 7.1 Graphene-Based THz Devices -- 7.1.1 THz Properties of Graphene -- 7.1.2 How to Simulate and Model Graphene? -- 7.1.3 Terahertz Device Applications of Graphene -- 7.1.3.1 Modulators -- 7.1.3.2 Active Filters -- 7.1.3.3 Phase Modulation in Graphene-Based Metamaterials -- 7.2 TMD Based THz Devices -- 7.3 Applications -- Exercises -- Exercise 1 Computation of the Optical Conductivity of Graphene -- Exercise 2 Terahertz Transmission Through a 2D Material Layer Placed at an Optical Interface -- Exercise 3 Transfer Matrix Approach for Multi-layer Transmission Problems -- Exercise 4 A Condition for Perfect Absorption -- Exercise 5 Terahertz Plasmon Resonances in Periodically Patterned Graphene Disk Arrays -- Exercise 6 Electron Plasma Waves in Gated Graphene.Exercise 7 Equivalent Circuit Modeling of 2D Material-Loaded Frequency Selective Surfaces -- Exercise 8 Maximum Terahertz Absorption in 2D Material-Loaded Frequency Selective Surfaces -- References -- Chapter 8 THz Plasma Field Effect Transistor Detectors -- 8.1 Introduction -- 8.2 Field Effect Transistors (FETs) and THz Plasma Oscillations -- 8.2.1 Dispersion of Plasma Waves in FETs -- 8.2.2 THz Detection by an FET -- 8.2.2.1 Resonant Detection -- 8.2.2.2 Broadband Detection -- 8.2.2.3 Enhancement by DC Drain Current -- 8.3 THz Detectors Based on Silicon FETs -- 8.4 Terahertz Detection by Graphene Plasmonic FETs -- 8.5 Terahertz Detection in Black-Phosphorus Nano-Transistors -- 8.6 Diamond Plasmonic THz Detectors -- 8.7 Conclusion -- Exercises -- Exercises 1-2 -- Exercises 3-10 -- Exercises 11-13 -- References -- Chapter 9 Signal Generation by Diode Frequency Multiplication -- 9.1 Introduction -- 9.2 Bridging the Microwave to Photonics Gap with Terahertz Frequency Multipliers -- 9.3 A Practical Approach to the Design of Frequency Multipliers -- 9.3.1 Frequency Multiplier Versus Comb Generator -- 9.3.2 Frequency Multiplier Ideal Matching Network and Ideal Device Performance -- 9.3.3 Symmetry at Device Level Versus Symmetry at Circuit Level -- 9.3.4 Classic Balanced Frequency Doublers -- 9.3.4.1 General Circuit Description -- 9.3.4.2 Necessary Condition to Balance the Circuit -- 9.3.5 Balanced Frequency Triplers with an Anti-Parallel Pair of Diodes -- 9.3.6 Multi-Anode Frequency Triplers in a Virtual Loop Configuration -- 9.3.6.1 General Circuit Description -- 9.3.6.2 Necessary Condition to Balance the Circuit -- 9.3.7 Multiplier Design Optimization -- 9.3.7.1 General Design Methodology -- 9.3.7.2 Nonlinear Modeling of the Schottky Diode Barrier -- 9.3.7.3 3D Modeling of the Extrinsic Structure of the Diodes.9.3.7.4 Modeling and Optimization of the Diode Cell."The book will address fundamentals of THz devices and their applications. THz technology relates to applications that span in frequency from a few hundred GHz to more than 1000 GHz. They require devices for signal generation, detection and treatment the characteristics of which have been reported in various publications but their in-depth understanding is often lacking or requires the consultation of multiple references. It is the purpose of this book to address the above topics in a way that both the beginner and advanced reader can obtain a better understanding of device operation and use"-- Provided by publisherTerahertz technologyElectronic books.Terahertz technology.621.38133Pavlidis DimitrisMiAaPQMiAaPQMiAaPQBOOK9910555277903321Fundamentals of terahertz devices and applications2818131UNINA