Vai al contenuto principale della pagina
Autore: | Georgi Howard |
Titolo: | Lie Algebras In Particle Physics : from Isospin To Unified Theories / / Howard Georgi |
Pubblicazione: | Taylor & Francis, 2000 |
Boca Raton, FL : , : CRC Press, , 2018 | |
Edizione: | Second edition. |
Descrizione fisica: | 1 online resource (339 p.) |
Disciplina: | 539.72 |
Soggetto topico: | Lie algebras |
Particles (Nuclear physics) | |
S-matrix theory | |
Classificazione: | SCI055000 |
Note generali: | "The Advanced Book Program." |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | Frontiers in Physics; Preface to the Revised Edition; Contents; Why Group Theory?; 1 Finite Groups; 2 Lie Groups; 3 SU(2); 4 Tensor Operators; 5 Isospin; 6 Roots and Weights; 7 SU(3); 8 Simple Roots; 9 More SU(3); 10 Tensor Methods; 11 Hypercharge and Strangeness; 12 Young Tableaux; 13 SU(N); 14 3-D Harmonic Oscillator; 15 SU(6) and the Quark Model; 16 Color; 17 Constituent Quarks; 18 Unified Theories and SU(5); 19 The Classical Groups; 20 The Classification Theorem; 21 SO(2n + 1) and Spinors; 22 SO(2n + 2) Spinors; 23 SU(n) in SO(2n); 24 SO(10); 25 Automorphisms; 26 Sp(2n); 27 Odds and Ends |
EpilogueIndex | |
Sommario/riassunto: | "Howard Georgi is the co-inventor (with Sheldon Glashow) of the SU(5) theory. This extensively revised and updated edition of his classic text makes the theory of Lie groups accessible to graduate students, while offering a perspective on the way in which knowledge of such groups can provide an insight into the development of unified theories of strong, weak, and electromagnetic interactions."--Provided by publisher. |
Titolo autorizzato: | Lie algebras in particle physics |
ISBN: | 0-429-97884-7 |
0-429-96776-4 | |
0-429-49921-3 | |
1-283-26146-4 | |
9786613261465 | |
0-8133-4611-8 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910502687103321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |