03093oam 2200721I 450 991050268710332120241107095743.00-429-97884-70-429-96776-40-429-49921-31-283-26146-497866132614650-8133-4611-810.1201/9780429499210(CKB)2670000000108163(EBL)746884(OCoLC)746747180(SSID)ssj0000555032(PQKBManifestationID)12242700(PQKBTitleCode)TC0000555032(PQKBWorkID)10517583(PQKB)10739399(MiAaPQ)EBC5389456(MiAaPQ)EBC746884(OCoLC)1029237046(oapen)https://directory.doabooks.org/handle/20.500.12854/72192(ODN)ODN0004031250(EXLCZ)99267000000010816320180706d2018 uy 0engur|n|---|||||txtccrLie Algebras In Particle Physics from Isospin To Unified Theories /Howard GeorgiSecond edition.Taylor & Francis2000Boca Raton, FL :CRC Press,2018.1 online resource (339 p.)Frontiers in Physics"The Advanced Book Program."0-367-09172-0 0-7382-0233-9 Includes bibliographical references and index.Frontiers in Physics; Preface to the Revised Edition; Contents; Why Group Theory?; 1 Finite Groups; 2 Lie Groups; 3 SU(2); 4 Tensor Operators; 5 Isospin; 6 Roots and Weights; 7 SU(3); 8 Simple Roots; 9 More SU(3); 10 Tensor Methods; 11 Hypercharge and Strangeness; 12 Young Tableaux; 13 SU(N); 14 3-D Harmonic Oscillator; 15 SU(6) and the Quark Model; 16 Color; 17 Constituent Quarks; 18 Unified Theories and SU(5); 19 The Classical Groups; 20 The Classification Theorem; 21 SO(2n + 1) and Spinors; 22 SO(2n + 2) Spinors; 23 SU(n) in SO(2n); 24 SO(10); 25 Automorphisms; 26 Sp(2n); 27 Odds and EndsEpilogueIndex"Howard Georgi is the co-inventor (with Sheldon Glashow) of the SU(5) theory. This extensively revised and updated edition of his classic text makes the theory of Lie groups accessible to graduate students, while offering a perspective on the way in which knowledge of such groups can provide an insight into the development of unified theories of strong, weak, and electromagnetic interactions."--Provided by publisher.Frontiers in PhysicsLie algebrasParticles (Nuclear physics)S-matrix theoryLie algebras.Particles (Nuclear physics)S-matrix theory.539.72SCI055000bisacshGeorgi Howard47145FlBoTFGFlBoTFGBOOK9910502687103321Lie algebras in particle physics188247UNINA