Vai al contenuto principale della pagina

Simulated Evolution and Learning : 10th International Conference, SEAL 2014, Dunedin, New Zealand, December 15-18, Proceedings / / edited by Grant Dick, Will N. Browne, Peter Whigham, Mengjie Zhang, Lam Thu Bui, Hisao Ishibuchi, Yaochu Jin, Xiaodong Li, Yuhui Shi, Pramod Singh, Kay Chen Tan, Ke Tang



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Simulated Evolution and Learning : 10th International Conference, SEAL 2014, Dunedin, New Zealand, December 15-18, Proceedings / / edited by Grant Dick, Will N. Browne, Peter Whigham, Mengjie Zhang, Lam Thu Bui, Hisao Ishibuchi, Yaochu Jin, Xiaodong Li, Yuhui Shi, Pramod Singh, Kay Chen Tan, Ke Tang Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014
Edizione: 1st ed. 2014.
Descrizione fisica: 1 online resource (XVI, 862 p. 267 illus.)
Disciplina: 004
Soggetto topico: Computer science
Artificial intelligence
Data mining
Computer simulation
Computer science—Mathematics
Discrete mathematics
Application software
Theory of Computation
Artificial Intelligence
Data Mining and Knowledge Discovery
Computer Modelling
Discrete Mathematics in Computer Science
Computer and Information Systems Applications
Persona (resp. second.): DickGrant
BrowneWill N
WhighamPeter
ZhangMengjie
BuiLam Thu
IshibuchiHisao
JinYaochu
LiXiaodong
ShiYuhui
SinghPramod
TanKay Chen
TangKe
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Evolutionary optimization -- Evolutionary multi-objective optimization -- Evolutionary machine learning -- Theoretical developments -- Evolutionary feature reduction -- Evolutionary scheduling and combinatorial optimization -- Real world applications and evolutionary image analysis.
Sommario/riassunto: This volume constitutes the proceedings of the 10th International Conference on Simulated Evolution and Learning, SEAL 2012, held in Dunedin, New Zealand, in December 2014. The 42 full papers and 29 short papers presented were carefully reviewed and selected from 109 submissions. The papers are organized in topical sections on evolutionary optimization; evolutionary multi-objective optimization; evolutionary machine learning; theoretical developments; evolutionary feature reduction; evolutionary scheduling and combinatorial optimization; real world applications and evolutionary image analysis.
Titolo autorizzato: Simulated Evolution and Learning  Visualizza cluster
ISBN: 3-319-13563-5
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910481960503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Theoretical Computer Science and General Issues, . 2512-2029 ; ; 8886