Vai al contenuto principale della pagina

Fundamentals of matrix analysis with applications / / Edward Barry Saff, Arthur David Snider



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Saff E. B. <1944-> Visualizza persona
Titolo: Fundamentals of matrix analysis with applications / / Edward Barry Saff, Arthur David Snider Visualizza cluster
Pubblicazione: Hoboken, New Jersey : , : John Wiley & Sons, Inc., , 2016
©2016
Descrizione fisica: 1 online resource (410 p.)
Disciplina: 512.9/434
Soggetto topico: Matrices
Algebras, Linear
Orthogonalization methods
Eigenvalues
Soggetto genere / forma: Electronic books.
Persona (resp. second.): SniderArthur David
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Title Page; Copyright Page; Contents; Preface; PART I INTRODUCTION: THREE EXAMPLES; Chapter 1 Systems of Linear Algebraic Equations; 1.1 Linear Algebraic Equations; 1.2 Matrix Representation of Linear Systems and the Gauss-Jordan Algorithm ; 1.3 The Complete Gauss Elimination Algorithm; 1.4 Echelon Form and Rank; 1.5 Computational Considerations; 1.6 Summary; Chapter 2 Matrix Algebra; 2.1 Matrix Multiplication; 2.2 Some Physical Applications of Matrix Operators; 2.3 The Inverse and the Transpose; 2.4 Determinants; 2.5 Three Important Determinant Rules; 2.6 Summary; Group Projects for Part I
A. LU Factorization B. Two-Point Boundary Value Problem; C. Electrostatic Voltage; D. Kirchhoff's Laws; E. Global Positioning Systems; F. Fixed-Point Methods; PART II INTRODUCTION: THE STRUCTURE OF GENERAL SOLUTIONS TO LINEAR ALGEBRAIC EQUATIONS; Chapter 3 Vector Spaces; 3.1 General Spaces, Subspaces, and Spans; 3.2 Linear Dependence; 3.3 Bases, Dimension, and Rank; 3.4 Summary; Chapter 4 Orthogonality; 4.1 Orthogonal Vectors and the Gram-Schmidt Algorithm; 4.2 Orthogonal Matrices; 4.3 Least Squares; 4.4 Function Spaces; 4.5 Summary; Group Projects for Part II; A. Rotations and Reflections
B. Householder Reflectors C. Infinite Dimensional Matrices; PART III INTRODUCTION: REFLECT ON THIS; Chapter 5 Eigenvectors and Eigenvalues; 5.1 Eigenvector Basics; 5.2 Calculating Eigenvalues and Eigenvectors; 5.3 Symmetric and Hermitian Matrices; 5.4 Summary; Chapter 6 Similarity; 6.1 Similarity Transformations and Diagonalizability; 6.2 Principle Axes and Normal Modes; 6.3 Schur Decomposition and Its Implications; 6.4 The Singular Value Decomposition; 6.5 The Power Method and the QR Algorithm; 6.6 Summary; Chapter 7 Linear Systems of Differential Equations; 7.1 First-Order Linear Systems
7.2 The Matrix Exponential Function 7.3 The Jordan Normal Form; 7.4 Matrix Exponentiation via Generalized Eigenvectors; 7.5 Summary; Group Projects for Part III; A. Positive Definite Matrices; B. Hessenberg Form; C. Discrete Fourier Transform; D. Construction of the SVD; E. Total Least Squares; F. Fibonacci Numbers; Answers to Odd Numbered Exercises; Index; EULA
Sommario/riassunto: This book provides comprehensive coverage of matrix theory from a geometric and physical perspective, and the authors address the functionality of matrices and their ability to illustrate and aid in many practical applications. Readers are introduced to inverses and eigenvalues through physical examples such as rotations, reflections, and projections, and only then are computational details described and explored. MATLAB is utilized to aid in reader comprehension, and the authors are careful to address the issue of rank fragility so readers are not flummoxed when MATLAB displays conflict with
Titolo autorizzato: Fundamentals of matrix analysis with applications  Visualizza cluster
ISBN: 1-118-99632-1
1-118-95368-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910460853703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui