Vai al contenuto principale della pagina

Micro Electromechanical Systems (MEMS) : Practical Lab Manual



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Goel Sanket Visualizza persona
Titolo: Micro Electromechanical Systems (MEMS) : Practical Lab Manual Visualizza cluster
Pubblicazione: Newark : , : John Wiley & Sons, Incorporated, , 2025
©2025
Edizione: 1st ed.
Descrizione fisica: 1 online resource (173 pages)
Disciplina: 621.381
Soggetto topico: Microelectromechanical systems
Microfluidic devices
Altri autori: KumarSanjeet  
BhaiyyaManish  
AmreenKhairunnisa  
KumarPavar Sai  
KumarAbhishek  
Nota di contenuto: Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- About the Editor -- List of Contributors -- Preface -- About the Companion Website -- Chapter 1 Multiphysics Simulations on the Effect of Fluidic Concentration Profiles Over Y-Channel andT-Channel Designs -- 1.1 Introduction -- 1.2 Real-Time Applications of This Study -- 1.3 Simulation Section -- 1.3.1 Prerequisites -- 1.3.2 Computer-Aided Designing (CAD) -- 1.3.3 Simulation Parameters -- 1.4 Results and Discussions -- 1.4.1 Model Designing -- 1.4.2 COMSOL Simulations -- 1.5 Conclusion -- References -- Chapter 2 Droplet Generation in T-Junction Microchannel Using Multiphysics Software -- 2.1 Introduction -- 2.1.1 Brief Overview -- 2.2 Simulation Section -- 2.2.1 Prerequisites -- 2.2.2 Model and Geometry Definition -- 2.2.3 Simulation Parameters -- 2.3 Result and Discussion -- 2.4 Conclusion -- References -- Chapter 3 Cleanroom-Assisted and Cleanroom-Free Photolithography -- 3.1 Introduction -- 3.2 Photolithography Basics, Classification and Applications -- 3.2.1 Cleanroom-Assisted Photolithography -- 3.2.2 Cleanroom-Unassisted Photolithography -- 3.2.3 Cleanroom-Assisted vs. Cleanroom-Unassisted Photolithography -- 3.3 Experimental Section on Designing and Development of Features Using Photolithography -- 3.3.1 Brief Overview -- 3.3.2 Prerequisites -- 3.3.3 Instrumentation and Software -- 3.3.4 Stepwise Photolithography Procedure to Develop a Pattern -- 3.4 Conclusion -- References -- Chapter 4 Additive Manufacturing (3D Printing) -- 4.1 Stereolithography (SLA) Printing of Y-Channeled Microfluidic Chip -- 4.1.1 Introduction -- 4.1.2 Real-Time Applications of This Study -- 4.1.3 Designing Section -- 4.1.3.1 Prerequisites -- 4.1.3.2 Software and Instrumentation -- 4.1.3.3 Designing a Y-ChanneledMicrofluidic Chip -- 4.1.4 3D Printing Section -- 4.1.4.1 Slicing Operations.
4.1.4.2 Cleaning and Curing Operations -- 4.1.5 Conclusion -- 4.2 Fused Deposition Modeling (FDM): Fabrication of Single Electrode Electrochemiluminescence Device -- 4.2.1 Introduction -- 4.2.1.1 Brief Overview -- 4.2.2 Designing Section -- 4.2.2.1 Prerequisites -- 4.2.2.2 Software and Instrumentation -- 4.2.2.3 Fabrication Step -- 4.2.3 Conclusion -- References -- Chapter 5 Laser Processing -- 5.1 CO2 Laser for Electrochemical Sensor Fabrication -- 5.1.1 Introduction -- 5.1.2 Real-Time Applications of This Study -- 5.1.3 Brief Overview -- 5.1.4 Experimental Section -- 5.1.4.1 Prerequisites -- 5.1.4.2 Materials, Instrumentation, and Software -- 5.1.4.3 Fabrication Steps -- 5.1.5 Conclusion -- 5.2 One-Step Production of Reduced Graphene Oxide from Paper via 450 nm Laser Ablations -- 5.2.1 Introduction -- 5.2.2 Experimentation -- 5.2.2.1 Prerequisites -- 5.2.2.2 Instrumentation and Software -- 5.2.2.3 Design File Generations -- 5.2.3 Production of rGO Patterns -- 5.3 Conclusion -- References -- Chapter 6 Soft Lithography: DLW-Based Microfluidic Device Fabrication -- 6.1 Introduction -- 6.2 Designing Section -- 6.2.1 Prerequisites -- 6.2.2 Instrumentation and Software -- 6.2.3 Step-by-Step Procedure for DLW-Soft Lithography Microfluidic Device Design -- 6.3 Conclusion -- References -- Chapter 7 Electrode Fabrication Techniques -- 7.1 Inkjet Printing Technique: Electrode Fabrication for Advanced Applications -- 7.1.1 Introduction -- 7.1.2 Designing Section -- 7.1.2.1 Prerequisites -- 7.1.2.2 Instrument and Equipment Required -- 7.1.2.3 Designing a Microelectrode Device -- 7.1.3 Dip Trace and Voltera V-One Microfabrication Section -- 7.1.3.1 Gerber Format File Generation -- 7.1.3.2 Voltera V-OneSoftware -- 7.1.4 Conclusion -- 7.2 Screen Printing Technique for Electrochemical Sensor Fabrication -- 7.2.1 Introduction -- 7.2.2 Brief Overview.
7.2.3 Experimental Section -- 7.2.3.1 Prerequisites -- 7.2.3.2 Materials, Instrumentation, and Software -- 7.2.3.3 Fabrication Steps -- 7.2.4 Conclusion -- 7.3 Physical Vapor Deposition (PVD) Technique for Electrode Fabrication -- 7.3.1 Introduction -- 7.3.1.1 Physical Vapor Deposition (PVD) -- 7.3.1.2 Gold Electrodes as Biosensors -- 7.3.2 Experimental Details -- 7.3.2.1 Instrument and Equipment Required -- 7.3.2.2 Equipment Setup -- 7.3.2.3 Substrate Preparation -- 7.3.2.4 Deposition Process -- 7.3.2.5 Electrode Fabrication -- 7.3.3 Precautions -- 7.4 Conclusion -- References -- Chapter 8 Morphological Characterization -- 8.1 Morphological Studies with Different Techniques -- 8.1.1 Introduction -- 8.2 Scanning Electron Microscopy -- 8.3 Steps Involved in the Scanning Electron Microscope Characterization -- 8.3.1 Brief Overview -- 8.3.2 Sample Preparation -- 8.3.3 Instrumentation -- 8.3.4 Results and Conclusion -- 8.4 X-Ray Diffraction (XRD) -- 8.4.1 Introduction -- 8.4.2 XRD Setup -- 8.4.3 Sample Preparations and Methodology -- 8.4.3.1 Brief Overview -- 8.4.3.1 Brief Overview -- 8.4.4 Steps Involved in Sample Preparation -- 8.4.5 Instrument Setup -- 8.4.6 Data Collection -- 8.4.7 Data Analysis -- 8.4.8 Crystal Structure Determination (if Necessary) -- 8.4.9 Data Interpretation -- 8.4.10 Conclusion -- 8.5 Optical LED Microscope -- 8.5.1 Introduction -- 8.5.2 Sample Preparation -- 8.5.2.1 Prerequisites -- 8.5.2.1 Prerequisites -- 8.5.3 Brief Overview -- 8.5.4 Principle of Optical Microscope -- 8.5.5 Sample Preparation and Instrumentation Setup -- 8.5.6 Conclusion -- 8.6 Contact Angle -- 8.6.1 Introduction -- 8.6.2 Setup Specifications -- 8.6.3 Biolin Scientific Theta Lite - Optical Tensiometer -- 8.6.4 Sample Preparations and Methodology -- 8.6.4.1 Brief Overview -- 8.6.4.1 Brief Overview.
8.6.5 Protocols to Be Followed While Operating the Instrument -- 8.6.6 Conclusions -- References -- Chapter 9 Spectroscopic Characterization -- 9.1 Introduction -- 9.2 Ultraviolet-Visible (UV-Vis) Spectrophotometers -- 9.2.1 Steps Involved -- 9.2.2 Conclusion -- 9.3 X-Ray Photoelectron Spectroscopy (XPS) -- 9.3.1 Fundamentals of XPS -- 9.3.1.1 XPS Instruments Have the Following Components -- 9.3.2 Sample Preparation Steps -- 9.3.2.1 Sample Mounting -- 9.3.3 Experimental Procedure -- 9.3.3.1 Detailed Instructions -- 9.3.4 Conclusion -- 9.4 Raman Spectroscopy -- 9.4.1 Sample Preparation -- 9.4.1.1 Prerequisites -- 9.4.2 Experimental Procedure -- 9.4.2.1 Instrumentation Configuration -- 9.4.2.2 Specific Intensity Ranges -- 9.4.2.3 Sample Preparation -- 9.4.2.4 Laser Targeting -- 9.4.2.5 Measurement of the Baseline -- 9.4.2.6 Subtraction of Dark Signals -- 9.4.2.7 Spectrum Calibration -- 9.4.2.8 Raman Scanning -- 9.4.2.9 Data Analysis -- 9.4.2.10 Data Interpretation -- 9.4.2.11 Data Representation -- 9.4.2.12 Cleansing -- 9.4.3 Results -- 9.5 Fourier Transform Infrared (FTIR) Spectroscopy -- 9.5.1 Brief Overview -- 9.5.2 Sampling Techniques in FTIR -- 9.5.3 Sample Preparation -- 9.5.3.1 Solid Samples (Powders and Thin Films) -- 9.5.3.2 Liquid Samples -- 9.5.3.3 Gaseous Sample -- 9.5.4 Interpretation of FTIR -- 9.5.5 Conclusion -- References -- Chapter 10 Microfluidic Devices -- 10.1 Electrochemical Detection of Bacteria, Biomarkers, Biochemical, and Environmental Pollutants -- 10.1.1 Introduction -- 10.1.2 Experimental Section for Detection of Bacteria (Escherichia coli (E. coli)) -- 10.1.2.1 Brief Overview -- 10.1.2.2 Prerequisites -- 10.1.2.3 Chemicals and Equipment -- 10.1.2.4 Procedure -- 10.1.3 Experimental Section for Detection of Biomarkers (Lactate) -- 10.1.3.1 Brief Overview -- 10.1.3.2 Prerequisites -- 10.1.3.3 Chemicals and Equipment.
10.1.3.4 Procedure -- 10.1.4 Experimental Section for Detection of Biochemical Analyte -- 10.1.4.1 Brief Overview -- 10.1.4.2 Prerequisites -- 10.1.4.3 Procedure -- 10.1.4.4 Discussion -- 10.1.5 Experimental Section for Detection of Environmental Pollutants -- 10.1.5.1 Brief Overview -- 10.1.5.2 Prerequisites -- 10.1.5.3 Procedure -- 10.1.6 Conclusion -- 10.2 Microfluidics Integrated Electrochemiluminescence System for Hydrogen Peroxide Detection -- 10.2.1 Introduction -- 10.2.2 Experimental Section -- 10.2.2.1 Brief Overview -- 10.2.2.2 Prerequisites -- 10.2.2.3 Materials and Instrumentation -- 10.2.2.4 General Electrochemiluminescence Process Luminol and Hydrogen Peroxide -- 10.2.2.5 Precautions -- 10.2.3 Conclusion -- 10.3 Development of Microfluidic Chip for Colorimetric Analysis -- 10.3.1 Introduction -- 10.3.2 Experimentation -- 10.3.2.1 Brief Overview -- 10.3.2.2 Prerequisites -- 10.3.2.3 Solution Preparation -- 10.3.2.4 Software Required -- 10.3.3 Colorimetric Determination on Microfluidic Chip -- 10.3.4 Conclusions -- 10.4 Development of Disposable and Eco-Friendly PADs as Chemiluminescence Substrates -- 10.4.1 Introduction -- 10.4.2 Real-Time Applications of This Study -- 10.4.3 Experimentation -- 10.4.3.1 Prerequisites -- 10.4.3.2 Software Installations -- 10.4.3.3 Design of Hydrophobic Barriers -- 10.4.4 3D Printing of Hydrophobic Barriers -- 10.4.5 Conclusion -- 10.5 Microfluidic Devices for Polymerase Chain Reaction (PCR) -- 10.5.1 Introduction -- 10.5.2 Prerequisites -- 10.5.3 Software Installations -- 10.5.4 Design and Fabrication of Microfluidic Device -- 10.5.5 Conclusion -- References -- Chapter 11 Wearable Devices -- 11.1 Application of Laser-Induced Graphene in Breath Analysis -- 11.1.1 Introduction -- 11.1.2 Experimentation -- 11.1.2.1 Brief Overview -- 11.1.3 Conclusion.
11.2 Wearable Microfluidic Device for Nucleic Acid Amplification.
Sommario/riassunto: This comprehensive manual provides practical guidance and insights into Microelectromechanical Systems (MEMS), with a focus on microfluidic device design, fabrication techniques, and simulation methodologies. Edited by Sanket Goel, the book explores various advanced topics such as additive manufacturing, laser processing, electrode fabrication, and spectroscopic analysis, supported by real-world applications. It includes contributions from multiple experts, offering detailed procedures, prerequisites, and experimental setups for designing and fabricating MEMS devices. Designed for researchers, engineers, and professionals working in sensor technology and microsystems, the manual serves as a valuable resource for mastering modern MEMS practices and methodologies.
Titolo autorizzato: Micro Electromechanical Systems (MEMS)  Visualizza cluster
ISBN: 9781394229840
1394229844
9781394229857
1394229852
9781394229864
1394229860
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9911019905003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: IEEE Press Series on Sensors Series