LEADER 12021nam 22006733 450 001 9911019905003321 005 20250210120438.0 010 $a9781394229840 010 $a1394229844 010 $a9781394229857 010 $a1394229852 010 $a9781394229864 010 $a1394229860 035 $a(CKB)37470046900041 035 $a(MiAaPQ)EBC31899708 035 $a(Au-PeEL)EBL31899708 035 $a(OCoLC)1497835300 035 $a(Exl-AI)31899708 035 $a(EXLCZ)9937470046900041 100 $a20250210d2025 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMicro Electromechanical Systems (MEMS) $ePractical Lab Manual 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2025. 210 4$d©2025. 215 $a1 online resource (173 pages) 225 1 $aIEEE Press Series on Sensors Series 311 08$a9781394229833 311 08$a1394229836 327 $aCover -- Series Page -- Title Page -- Copyright Page -- Contents -- About the Editor -- List of Contributors -- Preface -- About the Companion Website -- Chapter 1 Multiphysics Simulations on the Effect of Fluidic Concentration Profiles Over Y-Channel andT-Channel Designs -- 1.1 Introduction -- 1.2 Real-Time Applications of This Study -- 1.3 Simulation Section -- 1.3.1 Prerequisites -- 1.3.2 Computer-Aided Designing (CAD) -- 1.3.3 Simulation Parameters -- 1.4 Results and Discussions -- 1.4.1 Model Designing -- 1.4.2 COMSOL Simulations -- 1.5 Conclusion -- References -- Chapter 2 Droplet Generation in T-Junction Microchannel Using Multiphysics Software -- 2.1 Introduction -- 2.1.1 Brief Overview -- 2.2 Simulation Section -- 2.2.1 Prerequisites -- 2.2.2 Model and Geometry Definition -- 2.2.3 Simulation Parameters -- 2.3 Result and Discussion -- 2.4 Conclusion -- References -- Chapter 3 Cleanroom-Assisted and Cleanroom-Free Photolithography -- 3.1 Introduction -- 3.2 Photolithography Basics, Classification and Applications -- 3.2.1 Cleanroom-Assisted Photolithography -- 3.2.2 Cleanroom-Unassisted Photolithography -- 3.2.3 Cleanroom-Assisted vs. Cleanroom-Unassisted Photolithography -- 3.3 Experimental Section on Designing and Development of Features Using Photolithography -- 3.3.1 Brief Overview -- 3.3.2 Prerequisites -- 3.3.3 Instrumentation and Software -- 3.3.4 Stepwise Photolithography Procedure to Develop a Pattern -- 3.4 Conclusion -- References -- Chapter 4 Additive Manufacturing (3D Printing) -- 4.1 Stereolithography (SLA) Printing of Y-Channeled Microfluidic Chip -- 4.1.1 Introduction -- 4.1.2 Real-Time Applications of This Study -- 4.1.3 Designing Section -- 4.1.3.1 Prerequisites -- 4.1.3.2 Software and Instrumentation -- 4.1.3.3 Designing a Y-ChanneledMicrofluidic Chip -- 4.1.4 3D Printing Section -- 4.1.4.1 Slicing Operations. 327 $a4.1.4.2 Cleaning and Curing Operations -- 4.1.5 Conclusion -- 4.2 Fused Deposition Modeling (FDM): Fabrication of Single Electrode Electrochemiluminescence Device -- 4.2.1 Introduction -- 4.2.1.1 Brief Overview -- 4.2.2 Designing Section -- 4.2.2.1 Prerequisites -- 4.2.2.2 Software and Instrumentation -- 4.2.2.3 Fabrication Step -- 4.2.3 Conclusion -- References -- Chapter 5 Laser Processing -- 5.1 CO2 Laser for Electrochemical Sensor Fabrication -- 5.1.1 Introduction -- 5.1.2 Real-Time Applications of This Study -- 5.1.3 Brief Overview -- 5.1.4 Experimental Section -- 5.1.4.1 Prerequisites -- 5.1.4.2 Materials, Instrumentation, and Software -- 5.1.4.3 Fabrication Steps -- 5.1.5 Conclusion -- 5.2 One-Step Production of Reduced Graphene Oxide from Paper via 450 nm Laser Ablations -- 5.2.1 Introduction -- 5.2.2 Experimentation -- 5.2.2.1 Prerequisites -- 5.2.2.2 Instrumentation and Software -- 5.2.2.3 Design File Generations -- 5.2.3 Production of rGO Patterns -- 5.3 Conclusion -- References -- Chapter 6 Soft Lithography: DLW-Based Microfluidic Device Fabrication -- 6.1 Introduction -- 6.2 Designing Section -- 6.2.1 Prerequisites -- 6.2.2 Instrumentation and Software -- 6.2.3 Step-by-Step Procedure for DLW-Soft Lithography Microfluidic Device Design -- 6.3 Conclusion -- References -- Chapter 7 Electrode Fabrication Techniques -- 7.1 Inkjet Printing Technique: Electrode Fabrication for Advanced Applications -- 7.1.1 Introduction -- 7.1.2 Designing Section -- 7.1.2.1 Prerequisites -- 7.1.2.2 Instrument and Equipment Required -- 7.1.2.3 Designing a Microelectrode Device -- 7.1.3 Dip Trace and Voltera V-One Microfabrication Section -- 7.1.3.1 Gerber Format File Generation -- 7.1.3.2 Voltera V-OneSoftware -- 7.1.4 Conclusion -- 7.2 Screen Printing Technique for Electrochemical Sensor Fabrication -- 7.2.1 Introduction -- 7.2.2 Brief Overview. 327 $a7.2.3 Experimental Section -- 7.2.3.1 Prerequisites -- 7.2.3.2 Materials, Instrumentation, and Software -- 7.2.3.3 Fabrication Steps -- 7.2.4 Conclusion -- 7.3 Physical Vapor Deposition (PVD) Technique for Electrode Fabrication -- 7.3.1 Introduction -- 7.3.1.1 Physical Vapor Deposition (PVD) -- 7.3.1.2 Gold Electrodes as Biosensors -- 7.3.2 Experimental Details -- 7.3.2.1 Instrument and Equipment Required -- 7.3.2.2 Equipment Setup -- 7.3.2.3 Substrate Preparation -- 7.3.2.4 Deposition Process -- 7.3.2.5 Electrode Fabrication -- 7.3.3 Precautions -- 7.4 Conclusion -- References -- Chapter 8 Morphological Characterization -- 8.1 Morphological Studies with Different Techniques -- 8.1.1 Introduction -- 8.2 Scanning Electron Microscopy -- 8.3 Steps Involved in the Scanning Electron Microscope Characterization -- 8.3.1 Brief Overview -- 8.3.2 Sample Preparation -- 8.3.3 Instrumentation -- 8.3.4 Results and Conclusion -- 8.4 X-Ray Diffraction (XRD) -- 8.4.1 Introduction -- 8.4.2 XRD Setup -- 8.4.3 Sample Preparations and Methodology -- 8.4.3.1 Brief Overview -- 8.4.3.1 Brief Overview -- 8.4.4 Steps Involved in Sample Preparation -- 8.4.5 Instrument Setup -- 8.4.6 Data Collection -- 8.4.7 Data Analysis -- 8.4.8 Crystal Structure Determination (if Necessary) -- 8.4.9 Data Interpretation -- 8.4.10 Conclusion -- 8.5 Optical LED Microscope -- 8.5.1 Introduction -- 8.5.2 Sample Preparation -- 8.5.2.1 Prerequisites -- 8.5.2.1 Prerequisites -- 8.5.3 Brief Overview -- 8.5.4 Principle of Optical Microscope -- 8.5.5 Sample Preparation and Instrumentation Setup -- 8.5.6 Conclusion -- 8.6 Contact Angle -- 8.6.1 Introduction -- 8.6.2 Setup Specifications -- 8.6.3 Biolin Scientific Theta Lite - Optical Tensiometer -- 8.6.4 Sample Preparations and Methodology -- 8.6.4.1 Brief Overview -- 8.6.4.1 Brief Overview. 327 $a8.6.5 Protocols to Be Followed While Operating the Instrument -- 8.6.6 Conclusions -- References -- Chapter 9 Spectroscopic Characterization -- 9.1 Introduction -- 9.2 Ultraviolet-Visible (UV-Vis) Spectrophotometers -- 9.2.1 Steps Involved -- 9.2.2 Conclusion -- 9.3 X-Ray Photoelectron Spectroscopy (XPS) -- 9.3.1 Fundamentals of XPS -- 9.3.1.1 XPS Instruments Have the Following Components -- 9.3.2 Sample Preparation Steps -- 9.3.2.1 Sample Mounting -- 9.3.3 Experimental Procedure -- 9.3.3.1 Detailed Instructions -- 9.3.4 Conclusion -- 9.4 Raman Spectroscopy -- 9.4.1 Sample Preparation -- 9.4.1.1 Prerequisites -- 9.4.2 Experimental Procedure -- 9.4.2.1 Instrumentation Configuration -- 9.4.2.2 Specific Intensity Ranges -- 9.4.2.3 Sample Preparation -- 9.4.2.4 Laser Targeting -- 9.4.2.5 Measurement of the Baseline -- 9.4.2.6 Subtraction of Dark Signals -- 9.4.2.7 Spectrum Calibration -- 9.4.2.8 Raman Scanning -- 9.4.2.9 Data Analysis -- 9.4.2.10 Data Interpretation -- 9.4.2.11 Data Representation -- 9.4.2.12 Cleansing -- 9.4.3 Results -- 9.5 Fourier Transform Infrared (FTIR) Spectroscopy -- 9.5.1 Brief Overview -- 9.5.2 Sampling Techniques in FTIR -- 9.5.3 Sample Preparation -- 9.5.3.1 Solid Samples (Powders and Thin Films) -- 9.5.3.2 Liquid Samples -- 9.5.3.3 Gaseous Sample -- 9.5.4 Interpretation of FTIR -- 9.5.5 Conclusion -- References -- Chapter 10 Microfluidic Devices -- 10.1 Electrochemical Detection of Bacteria, Biomarkers, Biochemical, and Environmental Pollutants -- 10.1.1 Introduction -- 10.1.2 Experimental Section for Detection of Bacteria (Escherichia coli (E. coli)) -- 10.1.2.1 Brief Overview -- 10.1.2.2 Prerequisites -- 10.1.2.3 Chemicals and Equipment -- 10.1.2.4 Procedure -- 10.1.3 Experimental Section for Detection of Biomarkers (Lactate) -- 10.1.3.1 Brief Overview -- 10.1.3.2 Prerequisites -- 10.1.3.3 Chemicals and Equipment. 327 $a10.1.3.4 Procedure -- 10.1.4 Experimental Section for Detection of Biochemical Analyte -- 10.1.4.1 Brief Overview -- 10.1.4.2 Prerequisites -- 10.1.4.3 Procedure -- 10.1.4.4 Discussion -- 10.1.5 Experimental Section for Detection of Environmental Pollutants -- 10.1.5.1 Brief Overview -- 10.1.5.2 Prerequisites -- 10.1.5.3 Procedure -- 10.1.6 Conclusion -- 10.2 Microfluidics Integrated Electrochemiluminescence System for Hydrogen Peroxide Detection -- 10.2.1 Introduction -- 10.2.2 Experimental Section -- 10.2.2.1 Brief Overview -- 10.2.2.2 Prerequisites -- 10.2.2.3 Materials and Instrumentation -- 10.2.2.4 General Electrochemiluminescence Process Luminol and Hydrogen Peroxide -- 10.2.2.5 Precautions -- 10.2.3 Conclusion -- 10.3 Development of Microfluidic Chip for Colorimetric Analysis -- 10.3.1 Introduction -- 10.3.2 Experimentation -- 10.3.2.1 Brief Overview -- 10.3.2.2 Prerequisites -- 10.3.2.3 Solution Preparation -- 10.3.2.4 Software Required -- 10.3.3 Colorimetric Determination on Microfluidic Chip -- 10.3.4 Conclusions -- 10.4 Development of Disposable and Eco-Friendly PADs as Chemiluminescence Substrates -- 10.4.1 Introduction -- 10.4.2 Real-Time Applications of This Study -- 10.4.3 Experimentation -- 10.4.3.1 Prerequisites -- 10.4.3.2 Software Installations -- 10.4.3.3 Design of Hydrophobic Barriers -- 10.4.4 3D Printing of Hydrophobic Barriers -- 10.4.5 Conclusion -- 10.5 Microfluidic Devices for Polymerase Chain Reaction (PCR) -- 10.5.1 Introduction -- 10.5.2 Prerequisites -- 10.5.3 Software Installations -- 10.5.4 Design and Fabrication of Microfluidic Device -- 10.5.5 Conclusion -- References -- Chapter 11 Wearable Devices -- 11.1 Application of Laser-Induced Graphene in Breath Analysis -- 11.1.1 Introduction -- 11.1.2 Experimentation -- 11.1.2.1 Brief Overview -- 11.1.3 Conclusion. 327 $a11.2 Wearable Microfluidic Device for Nucleic Acid Amplification. 330 $aThis comprehensive manual provides practical guidance and insights into Microelectromechanical Systems (MEMS), with a focus on microfluidic device design, fabrication techniques, and simulation methodologies. Edited by Sanket Goel, the book explores various advanced topics such as additive manufacturing, laser processing, electrode fabrication, and spectroscopic analysis, supported by real-world applications. It includes contributions from multiple experts, offering detailed procedures, prerequisites, and experimental setups for designing and fabricating MEMS devices. Designed for researchers, engineers, and professionals working in sensor technology and microsystems, the manual serves as a valuable resource for mastering modern MEMS practices and methodologies.$7Generated by AI. 410 0$aIEEE Press Series on Sensors Series 606 $aMicroelectromechanical systems$7Generated by AI 606 $aMicrofluidic devices$7Generated by AI 615 0$aMicroelectromechanical systems 615 0$aMicrofluidic devices 676 $a621.381 700 $aGoel$b Sanket$01842542 701 $aKumar$b Sanjeet,$01842543 701 $aBhaiyya$b Manish$01842544 701 $aAmreen$b Khairunnisa$01842545 701 $aKumar$b Pavar Sai$01842546 701 $aKumar$b Abhishek$0977677 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019905003321 996 $aMicro Electromechanical Systems (MEMS)$94422711 997 $aUNINA