Vai al contenuto principale della pagina

Emerging technologies for nanoparticle manufacturing / / Jayvadan K. Patel, Yashwant V. Pathak, editors



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Emerging technologies for nanoparticle manufacturing / / Jayvadan K. Patel, Yashwant V. Pathak, editors Visualizza cluster
Pubblicazione: Cham, Switzerland : , : Springer, , [2021]
©2021
Descrizione fisica: 1 online resource (604 pages)
Disciplina: 620.5
Soggetto topico: Nanomanufacturing
Nanopartícules
Soggetto genere / forma: Llibres electrònics
Persona (resp. second.): PatelJayvadan K.
PathakYashwant
Note generali: Includes index.
Nota di contenuto: Intro -- Foreword -- Preface -- Acknowledgments -- Contents -- Part I: Introduction and Biomedical Applications of Nanoparticles -- 1: Introduction to Nanomaterials and Nanotechnology -- 1 Introduction -- 2 Nanomaterials -- 3 Why Are Nanoscale Materials: So Special and Unique? -- 4 Classification of Nanoscale Materials -- 4.1 Classification of Nanomaterials Based on Their Origin -- 4.2 Classification of Nanomaterials Based on the Chemical Composition -- 4.3 Material-Based Classification -- 4.4 Classification of Nanomaterials Based on Their Dimensions -- 5 Properties: The Physics at the Nanoscale -- 5.1 Confinement Effect -- 5.2 Surface Effects -- 5.3 Mechanical Properties -- 5.4 Structural Properties -- 5.5 Thermal Properties -- 5.6 Optical Properties -- 5.7 Magnetic Properties -- 6 Nanomaterials Synthesis Strategies -- 6.1 Bottom-Up Procedures -- 6.2 Top-Down Procedures -- 7 Conclusion -- References -- 2: Biomedical Applications of Nanoparticles -- 1 Introduction -- 1.1 Applications of Nanoparticles in Biomedical -- 2 Conclusion -- References -- Part II: Polymeric Nanoparticles -- 3: Nanocrystallization and Nanoprecipitation Technologies -- 1 Introduction -- 2 Definition -- 3 Prominent Attributes -- 3.1 Surface Area Enlargement -- 3.2 Increase in Saturation Solubility -- 3.3 Crystalline or Amorphous Particle States -- 4 Production Technologies -- 5 Nanocrystallization and Nanoprecipitation Technologies -- 6 Media Milling -- 6.1 Mechanism Involved -- 6.2 Selection of Bead Size -- 6.3 Particle Surface Modification -- 7 Cryo-Milling -- 7.1 Definition -- 7.2 Ultra Cryo-Milling -- 8 Solvent-Antisolvent Precipitation -- 8.1 Fundamental Principle of Antisolvent Precipitation Techniques -- 8.2 Step-Up Antisolvent Precipitation Process -- 8.2.1 Mixing -- 8.2.2 Mixing Devices.
9 Role of Stabilizer in Antisolvent Precipitation Techniques -- 10 Future Perspectives -- References -- 4: Microfluidics Technology for Nanoparticles and Equipment -- 1 Introduction -- 2 Principle Foundation -- 3 Mixing -- 3.1 Active Micromixers -- 3.2 Passive Micromixers -- 4 Microfluidic Reactors: Features for the Manufacture of Nanoparticles -- 5 Design of the Reactor -- 6 Fabrication of Microfluidic Devices -- 7 Microfluidic Devices: Types -- 8 Formulation of Nano Drug Delivery System Using Microfluidics -- 8.1 Pure Drug Nanoparticles -- 8.1.1 Crystalline Drug Nanoparticles -- 8.2 Amorphous Drug Nanoparticles -- 8.3 API Loaded Nanoparticles Generated Using Microfluidic Technology -- 9 Microfluidic and Bulk Technologies: Comparison (Jahn et al. 2007) -- 10 Microfluidics: Nanoparticles Drug Delivery -- 10.1 Flow Focusing Method -- 10.2 Micro-vortices Method -- 10.3 Chaotic Flow Method -- 10.4 Droplets Method -- 10.5 Other Methods -- 11 Microfluidics: Nanoparticles Characterization -- 11.1 Characterization of Particle Size and Morphology -- 11.2 Charge Characterization -- 11.3 Characterization of Drug Loading and Drug Release -- 12 Microfluidics: Nanoparticle Evaluation -- 13 Production of Nanoparticles Using Microfluidic Devices -- 13.1 Lipid Nanoparticles (LNPs) -- 13.2 Polymeric Nanoparticles -- 13.3 Theranostic Nanoparticles -- 14 Microfluidic Tools for Nanoparticles Investigation -- 14.1 Organ-on-a-Chip -- 14.2 Blood Vessel-on-a-Chip -- 14.3 Blood Brain Barrier-on-a-Chip -- 14.4 Tumour-on-a-Chip -- 14.5 Lung-on-a-Chip -- 14.6 Liver-on-a-Chip -- 14.7 Kidney-on-a-Chip -- 14.8 Heart-on-a-Chip -- 15 Companies Working on Microfluidic Technology -- 16 Future Developments -- 17 Conclusion -- References -- 5: Production of Nanocomposites via Extrusion Techniques -- 1 Introduction.
2 Polymeric Nanocomposites by Extrusion Method -- 3 Metal Matrix Nanocomposites Prepared by Extrusion Method -- 4 Conclusion -- References -- 6: The Use of Supercritical Fluid Technologies for Nanoparticle Production -- 1 Introduction -- 2 Supercritical Fluid Technology -- 3 Supercritical Fluids -- 4 Supercritical Processes for Nanoparticles Manufacturing -- 4.1 Particles from Gas-Saturated Solutions (PGSS) -- 4.2 Rapid Expansion of Supercritical Solutions (RESS) -- 4.3 Gas Anti-solvent Processes (GAS) -- 4.4 Supercritical Anti-solvent Processes (SAS) -- 4.5 Aerosol Solvent Extraction System (ASES) -- 4.6 Supercritical Anti-solvent with Enhanced Mass Transfer (SAS-EM) -- 4.7 Solution-Enhanced Dispersion by Supercritical Fluids (SEDS) -- 4.8 Suspension-Enhanced Dispersion by Supercritical Fluids (SpEDS Process) -- 4.9 Supercritical Assisted Atomization (SAA) -- 5 Application of SCF for Production of Nanoparticles -- 6 Summary and Future Perspective -- References -- 7: Salting Out and Ionic Gelation Manufacturing Techniques for Nanoparticles -- 1 Introduction -- 2 Nanotechnology in Drug Delivery Systems -- 3 Polymeric Nanoparticles -- 4 Drug Releasing Mechanism of Nanoparticles -- 5 Development of Polymeric Nanoparticles -- 5.1 Polymerization -- 5.1.1 Emulsion-Polymerization Technique -- 5.1.2 Interfacial Polymerization Technique -- 5.2 Development of Polymeric Nanoparticles From Preformed Polymers -- 5.2.1 Emulsification and Solvent Evaporation Method -- 5.2.2 Solvent Displacement Technique -- 5.2.3 Interfacial Deposition Technique -- 5.2.4 Emulsification and Solvent Diffusion -- 5.2.5 Salting-Out Method -- Effect of Various Parameters on Salting-Out Technique -- Advantages of the Salting-Out Method -- Disadvantages of the Salting-Out Method -- Scale-Up of the Salting-Out Method.
Effect of Process Parameters on the Quality of the Nanoformulation During the Scale-Up of Method -- The Theoretical Model for the Preparation of Nanoparticles by the Salting-Out Method -- Relation of the Rate of Stirring to the Nanoparticle Size -- Model for Drug Transport From the Salted-Out Scaffold -- Salting-Out Method and Transition of Polymer Properties -- Applications of the Salting-Out Method -- Preparation of PLGA- and PLA-Based Nanoformulations -- Preparation of Polymeric Nanoparticles for Gene Therapy by the Salting-Out Method -- Interactions Between Crosslinking Ions and Polymeric Chains -- Combination of the Salting-Out Method with Other Methods -- Emulsion Solvent Evaporation-Salting-Out Technique -- Emulsion-Based and Aqueous-Based Salting-Out Method -- 5.2.6 Supercritical Fluid Technology -- 5.2.7 Rapid Expansion of Supercritical Solution (RESS) -- 5.2.8 Rapid Expansion of Supercritical Solution into a Liquid Solvent -- 5.2.9 Electrospraying Technology -- 5.2.10 Ionic Gelation Method -- Chitosan-Based Nanoformulations -- Characterization of Chitosan -- Molecular Weight Determination -- Calculation of the Degree of Deacetylation -- Chitosan-Based Nanoparticles and Ionic Gelation Method -- 5.2.11 Microreactor Application in the Preparation of Chitosan Nanoparticles by Ionic Gelation Method -- 5.2.12 Theoretical Analysis of Nanoparticle Preparation by Ionic Gelation Method in a Microreactor -- 5.2.13 Hydrogels of Drug-Loaded Chitosan-Based Nanoparticle -- 5.2.14 Preparation of Alginate-Based Nanoparticles by Ionic Gelation Method -- Alginate Hydrogels -- Factors Influencing the Crosslinking Degree of Alginate-Based Hydrogels -- Evaluation of Hydrogels -- Preparation of Sodium Alginate Nanoparticles by Ionic Gelation Method -- Preparation Sodium Pectin-Based Nanoparticles by Ionic Gelation Method.
Ionic Gelation Method for the Preparation of Nanogels -- Ionic Gelation Method for the Development of Nanoparticles Loaded Films -- 5.3 Effect of Process Parameters on the Quality of Nanoformulations -- 5.3.1 Polymer -- 5.3.2 Crosslinking Agent -- 5.3.3 Polymer and Drug Ratio -- 5.3.4 Sonication -- 5.4 Effect of Morphological and Physicochemical Properties on the Quality of Nanoformulation -- 5.4.1 Particle Size -- 5.4.2 Drug Loading and Entrapment Efficiency -- 5.4.3 Drug Release Kinetics -- 5.4.4 Degree of Swelling -- 5.4.5 Zeta Potential -- 5.4.6 Cellular Uptake of Nanoparticles -- 5.5 Modified Traditional Methods for the Development of Nanoparticles -- 5.5.1 Dialysis -- 5.5.2 Membrane Evaporation and Emulsion Technique -- 5.5.3 Premix Membrane Emulsification -- 5.5.4 Spray-Dry Method -- 5.5.5 Spray Solvent Displacement Combined with Dialysis -- 6 Conclusion -- References -- 8: Nanogel Synthesis by Irradiation of Aqueous Polymer Solutions -- 1 Introduction -- 2 Nanosized Particles in Medicine -- 3 Nanogels: Highlights and Applications -- 4 Synthesis Methods of Nanogels -- 4.1 Crosslinking/Polymerization of Monomer or Monomer Mixtures -- 4.2 Crosslinking of Preformed Polymers -- 5 Radiation-Induced Synthesis of Nanogels -- 5.1 Radiation Chemistry of Aqueous Systems -- 6 Conclusions and Future Prospects -- References -- 9: Cellulose Acetate-Based Nanofibers: Synthesis, Manufacturing, and Applications -- 1 Introduction -- 2 Derivatives of CA Polymer -- 3 Synthesis and Manufacturing of CA-Based Nanofibers -- 3.1 Electrospinning Process and Mechanism -- 3.2 Solvent Selection -- 3.2.1 Acetone-Based Solvent Systems -- (a) Using Water Acetone System -- (b) Acetone-DMF System -- (c) Using Acetone-DMAc Solvents -- 3.2.2 Other Solvent Systems -- 3.3 Deacetylation Study -- 4 Application of CA Nanofibers.
4.1 Antibacterial Application.
Titolo autorizzato: Emerging technologies for nanoparticle manufacturing  Visualizza cluster
ISBN: 3-030-50703-3
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910488720503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui