Vai al contenuto principale della pagina

Arithmetic Moduli of Elliptic Curves. (AM-108), Volume 108 / / Barry Mazur, Nicholas M. Katz



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Katz Nicholas M. Visualizza persona
Titolo: Arithmetic Moduli of Elliptic Curves. (AM-108), Volume 108 / / Barry Mazur, Nicholas M. Katz Visualizza cluster
Pubblicazione: Princeton, NJ : , : Princeton University Press, , [2016]
©1985
Descrizione fisica: 1 online resource (532 pages) : illustrations
Disciplina: 516.3/5
Soggetto topico: Curves, Elliptic
Moduli theory
Geometry, Algebraic
Soggetto non controllato: Abelian variety
Addition
Algebraic variety
Algebraically closed field
Ambient space
Arithmetic
Axiom
Barry Mazur
Base change
Calculation
Canonical map
Change of base
Closed immersion
Coefficient
Coherent sheaf
Cokernel
Commutative property
Congruence relation
Coprime integers
Corollary
Cusp form
Cyclic group
Dense set
Diagram (category theory)
Dimension
Discrete valuation ring
Disjoint union
Divisor
Eigenfunction
Elliptic curve
Empty set
Factorization
Field of fractions
Finite field
Finite group
Finite morphism
Free module
Functor
Group (mathematics)
Integer
Irreducible component
Level structure
Local ring
Maximal ideal
Modular curve
Modular equation
Modular form
Moduli space
Morphism of schemes
Morphism
Neighbourhood (mathematics)
Noetherian
One-parameter group
Open problem
Prime factor
Prime number
Prime power
Q.E.D.
Regularity theorem
Representation theory
Residue field
Riemann hypothesis
Smoothness
Special case
Subgroup
Subring
Subset
Theorem
Topology
Two-dimensional space
Zariski topology
Persona (resp. second.): MazurBarry
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Frontmatter -- TABLE OF CONTENTS -- INTRODUCTION -- Chapter 1. GENERALITIES ON " A-STRUCTURES" AND " A-GENERATORS" -- Chapter 2. REVIEW OF ELLIPTIC CURVES -- Chapter 3. THE FOUR BASIC MODULI PROBLEMS FOR ELLIPTIC CURVES: SORITES -- Chapter 4. THE FORMALISM OF MODULI PROBLEMS -- Chapter 5. REGULARITY THEOREMS -- Chapter 6. CYCLICITY -- Chapter 7. QUOTIENTS BY FINITE GROUPS -- Chapter 8. COARSE MODULI SCHEMES, CUSPS, AND COMPACTIFICATION -- Chapter 9. MODULI PROBLEMS VIEWED OVER CYCLOTOMIC INTEGER RINGS -- Chapter 10. THE CALCULUS OF CUSPS AND COMPONENTS VIA THE GROUPS T[N], AND THE GLOBAL STRUCTURE OF THE BASIC MODULI PROBLEMS -- Chapter 11. INTERLUDE-EXOTIC MODULAR MORPHISMS AND ISOMORPHISMS -- Chapter 12. NEW MODULI PROBLEMS IN CHARACTERISTIC p; IGUSA CURVES -- Chapter 13. REDUCTIONS mod p OF THE BASIC MODULI PROBLEMS -- Chapter 14. APPLICATION TO THEOREMS OF GOOD REDUCTION -- NOTES ADDED IN PROOF -- REFERENCES
Sommario/riassunto: This work is a comprehensive treatment of recent developments in the study of elliptic curves and their moduli spaces. The arithmetic study of the moduli spaces began with Jacobi's "Fundamenta Nova" in 1829, and the modern theory was erected by Eichler-Shimura, Igusa, and Deligne-Rapoport. In the past decade mathematicians have made further substantial progress in the field. This book gives a complete account of that progress, including not only the work of the authors, but also that of Deligne and Drinfeld.
Titolo autorizzato: Arithmetic Moduli of Elliptic Curves. (AM-108), Volume 108  Visualizza cluster
ISBN: 1-4008-8171-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910154753303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Annals of mathematics studies ; ; Number 108.