LEADER 05517nam 22014535 450 001 9910154753303321 005 20190708092533.0 010 $a1-4008-8171-4 024 7 $a10.1515/9781400881710 035 $a(CKB)3710000000620134 035 $a(SSID)ssj0001651233 035 $a(PQKBManifestationID)16425327 035 $a(PQKBTitleCode)TC0001651233 035 $a(PQKBWorkID)14419870 035 $a(PQKB)11156672 035 $a(MiAaPQ)EBC4738562 035 $a(DE-B1597)468026 035 $a(OCoLC)979579083 035 $a(DE-B1597)9781400881710 035 $a(EXLCZ)993710000000620134 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aArithmetic Moduli of Elliptic Curves. (AM-108), Volume 108 /$fBarry Mazur, Nicholas M. Katz 210 1$aPrinceton, NJ : $cPrinceton University Press, $d[2016] 210 4$d©1985 215 $a1 online resource (532 pages) $cillustrations 225 0 $aAnnals of Mathematics Studies ;$v272 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-691-08349-5 311 $a0-691-08352-5 320 $aIncludes bibliographical references. 327 $tFrontmatter -- $tTABLE OF CONTENTS -- $tINTRODUCTION -- $tChapter 1. GENERALITIES ON " A-STRUCTURES" AND " A-GENERATORS" -- $tChapter 2. REVIEW OF ELLIPTIC CURVES -- $tChapter 3. THE FOUR BASIC MODULI PROBLEMS FOR ELLIPTIC CURVES: SORITES -- $tChapter 4. THE FORMALISM OF MODULI PROBLEMS -- $tChapter 5. REGULARITY THEOREMS -- $tChapter 6. CYCLICITY -- $tChapter 7. QUOTIENTS BY FINITE GROUPS -- $tChapter 8. COARSE MODULI SCHEMES, CUSPS, AND COMPACTIFICATION -- $tChapter 9. MODULI PROBLEMS VIEWED OVER CYCLOTOMIC INTEGER RINGS -- $tChapter 10. THE CALCULUS OF CUSPS AND COMPONENTS VIA THE GROUPS T[N], AND THE GLOBAL STRUCTURE OF THE BASIC MODULI PROBLEMS -- $tChapter 11. INTERLUDE-EXOTIC MODULAR MORPHISMS AND ISOMORPHISMS -- $tChapter 12. NEW MODULI PROBLEMS IN CHARACTERISTIC p; IGUSA CURVES -- $tChapter 13. REDUCTIONS mod p OF THE BASIC MODULI PROBLEMS -- $tChapter 14. APPLICATION TO THEOREMS OF GOOD REDUCTION -- $tNOTES ADDED IN PROOF -- $tREFERENCES 330 $aThis work is a comprehensive treatment of recent developments in the study of elliptic curves and their moduli spaces. The arithmetic study of the moduli spaces began with Jacobi's "Fundamenta Nova" in 1829, and the modern theory was erected by Eichler-Shimura, Igusa, and Deligne-Rapoport. In the past decade mathematicians have made further substantial progress in the field. This book gives a complete account of that progress, including not only the work of the authors, but also that of Deligne and Drinfeld. 410 0$aAnnals of mathematics studies ;$vNumber 108. 606 $aCurves, Elliptic 606 $aModuli theory 606 $aGeometry, Algebraic 610 $aAbelian variety. 610 $aAddition. 610 $aAlgebraic variety. 610 $aAlgebraically closed field. 610 $aAmbient space. 610 $aArithmetic. 610 $aAxiom. 610 $aBarry Mazur. 610 $aBase change. 610 $aCalculation. 610 $aCanonical map. 610 $aChange of base. 610 $aClosed immersion. 610 $aCoefficient. 610 $aCoherent sheaf. 610 $aCokernel. 610 $aCommutative property. 610 $aCongruence relation. 610 $aCoprime integers. 610 $aCorollary. 610 $aCusp form. 610 $aCyclic group. 610 $aDense set. 610 $aDiagram (category theory). 610 $aDimension. 610 $aDiscrete valuation ring. 610 $aDisjoint union. 610 $aDivisor. 610 $aEigenfunction. 610 $aElliptic curve. 610 $aEmpty set. 610 $aFactorization. 610 $aField of fractions. 610 $aFinite field. 610 $aFinite group. 610 $aFinite morphism. 610 $aFree module. 610 $aFunctor. 610 $aGroup (mathematics). 610 $aInteger. 610 $aIrreducible component. 610 $aLevel structure. 610 $aLocal ring. 610 $aMaximal ideal. 610 $aModular curve. 610 $aModular equation. 610 $aModular form. 610 $aModuli space. 610 $aMorphism of schemes. 610 $aMorphism. 610 $aNeighbourhood (mathematics). 610 $aNoetherian. 610 $aOne-parameter group. 610 $aOpen problem. 610 $aPrime factor. 610 $aPrime number. 610 $aPrime power. 610 $aQ.E.D. 610 $aRegularity theorem. 610 $aRepresentation theory. 610 $aResidue field. 610 $aRiemann hypothesis. 610 $aSmoothness. 610 $aSpecial case. 610 $aSubgroup. 610 $aSubring. 610 $aSubset. 610 $aTheorem. 610 $aTopology. 610 $aTwo-dimensional space. 610 $aZariski topology. 615 0$aCurves, Elliptic. 615 0$aModuli theory. 615 0$aGeometry, Algebraic. 676 $a516.3/5 700 $aKatz$b Nicholas M., $059374 702 $aMazur$b Barry, 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154753303321 996 $aArithmetic Moduli of Elliptic Curves. (AM-108), Volume 108$92788038 997 $aUNINA LEADER 01079nam a22002771i 4500 001 991003261399707536 005 20040308084727.0 008 040802s2002 xr a||||||||||||||||ger 020 $a8070361425 035 $ab13049008-39ule_inst 035 $aARCHE-100161$9ExL 040 $aBiblioteca Interfacoltà$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a914.37 100 1 $aVokolek, Vit$0488816 245 10$aGraberfeld der urnenfelderkultur von Skalice/Ostbohmen /$cVit Vokolek 260 $aPragae :$bMuseum Nationale Pragae,$c2002 300 $a354 p. :$bill. ;$c30 cm 440 0$aFontes Archaeologici Pragenses ;$v26 650 4$aUrne cinerarie$xRepubblica Ceca 650 4$aRepubblica Ceca$xArcheologia 907 $a.b13049008$b02-04-14$c05-08-04 912 $a991003261399707536 945 $aLE002 St. XI G 5$g1$i2002000254528$lle002$nC. 1$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i1367304x$z05-08-04 996 $aGraberfeld der urnenfelderkultur von Skalice$9286561 997 $aUNISALENTO 998 $ale002$b05-08-04$cm$da $e-$fger$git $h0$i1