Vai al contenuto principale della pagina

Design and Application of Intelligent Thermally Conductive Materials



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Feng Wei Visualizza persona
Titolo: Design and Application of Intelligent Thermally Conductive Materials Visualizza cluster
Pubblicazione: Chantilly : , : Elsevier, , 2025
©2025
Edizione: 1st ed.
Descrizione fisica: 1 online resource (349 pages)
Disciplina: 620.11296
Nota di contenuto: Intro -- Design and Application of Intelligent Thermally Conductive Materials -- Copyright -- Contents -- Preface -- Description of contents -- Chapter 1 Overview of thermal conductivity -- 1.1 Thermally conductive materials -- 1.2 Mechanism of thermal conductivity -- 1.3 Influencing factors -- 1.3.1 Thermally conductive fillers -- 1.3.1.1 Single filler -- 1.3.1.2 Composite filler -- 1.3.1.3 Orientation filler -- 1.3.1.4 Three-dimensional (3D) fillers -- 1.3.2 Thermally conductive substrates -- 1.3.2.1 Metal-based thermally conductive materials -- 1.3.2.2 Inorganic, nonmetallic-based thermally conductive materials -- 1.3.2.3 Polymer-based thermally conductive materials -- 1.3.3 Thermally conductive interfaces -- 1.3.3.1 Interface theory -- 1.3.3.2 Interface between filler and matrix -- 1.3.3.3 The contact interface between matrix and filler -- 1.3.3.4 The contact interface between the thermally conductive composite material and the device -- 1.4 Test methods -- 1.4.1 Homeostatic approach -- 1.4.1.1 Thermofluidic meter method -- 1.4.1.2 Plate method (hot plate method) -- 1.4.2 Dynamic approach -- 1.4.2.1 Hot wire method -- 1.4.2.2 Laser method -- 1.5 Research status and industry -- 1.6 Summary of this chapter -- References -- Chapter 2 Overview of intelligent thermally conductive materials -- 2.1 Concept of intelligent thermally conductive materials -- 2.2 Heat transfer mechanism of intelligent thermally conductive materials -- 2.2.1 Phonon conduction -- 2.2.2 Phonon conduction in intrinsic intelligent thermally conductive materials -- 2.2.3 Phonon conduction of embedded intelligent thermally conductive materials -- 2.3 Influencing factors -- 2.3.1 Ambient temperature -- 2.3.2 Volume morphology -- 2.3.3 External pressure -- 2.4 Classification of intelligent thermally conductive materials.
2.4.1 Metal-based intelligent thermally conductive materials -- 2.4.2 Nonmetallic carbon-based intelligent thermally conductive materials -- 2.4.3 Polymer-based intelligent thermally conductive materials -- 2.4.4 Phase-change intelligent thermally conductive materials -- 2.4.5 Thermal-induced shape memory intelligent materials -- 2.4.6 Thermochromic intelligent materials -- 2.4.7 High thermal conductivity intelligent thermal interface composite material -- 2.5 Summary of this chapter -- References -- Chapter 3 Designing for intelligent performance -- 3.1 Temperature perception -- 3.1.1 Shape memory polymer materials -- 3.1.1.1 Unidirectional shape memory -- 3.1.1.2 Bidirectional shape memory -- 3.1.2 Temperature-sensitive hydrogel material -- 3.1.3 Liquid crystal elastomer material -- 3.2 Intelligent thermally conductive control -- 3.2.1 Nanosuspension materials -- 3.2.2 Phase change materials -- 3.2.3 Atomic intercalation materials -- 3.2.4 Soft material -- 3.2.5 Materials regulated by specific external fields -- 3.3 Temperature-responsive thermal switch -- 3.3.1 Solid-liquid phase change thermal switch -- 3.3.1.1 Graphite/cetane composite materials -- 3.3.1.2 Carbon nanotubes and cetane composite materials -- 3.3.2 Soft matter switch -- 3.3.2.1 Nano polyethylene fiber -- 3.3.2.2 Poly ( N -isopropylacrylamide) hydrogel -- 3.3.3 Metal or inorganic thermal switches -- 3.3.3.1 VO 2 conductor-insulator phase transition -- 3.3.3.2 Liquid gallium-filled carbon nanotubes -- 3.4 Integration of multiple intelligent functions -- 3.4.1 Thermal management sensing materials -- 3.4.2 Thermal management-Infrared materials -- 3.4.3 Thermal management-Phase change materials -- 3.4.4 Thermal management-Self-healing materials -- 3.5 Summary of this chapter -- References -- Chapter 4 Design of intelligent thermally conductive materials.
4.1 Intelligent thermally conductive matrix material design -- 4.1.1 Polymer intelligent thermally conductive matrixes -- 4.1.1.1 Temperature-responsive polymer intelligent matrixes -- 4.1.1.2 Light-responsive polymer intelligent matrixes -- 4.1.1.3 Photochromic polymers -- 4.1.1.4 Electrically responsive polymer intelligent matrixes -- 4.1.1.5 Photothermal-responsive polymer intelligent matrixes -- 4.1.2 Metal intelligent thermally conductive substrates -- 4.1.2.1 Memory metal intelligent substrates -- 4.1.2.2 Thermally responsive metal intelligent substrates -- 4.1.3 Inorganic nonmetallic intelligent thermally conductive matrixes -- 4.1.3.1 Zirconia toughened ceramics -- 4.1.3.2 Dexterous ceramics -- 4.1.3.3 Piezoelectric biomimetic ceramics -- 4.1.3.4 Intelligent cement -- 4.2 Design of intelligent thermally conductive fillers -- 4.2.1 Metal-based thermally conductive fillers -- 4.2.1.1 Solid metal fillers -- Copper -- Silver nanowires -- Aluminum and its oxides -- 4.2.1.2 Liquid metals -- 4.2.2 Carbon-based thermally conductive fillers -- 4.2.2.1 Graphene -- 4.2.2.2 Carbon nanotubes -- 4.2.2.3 Randomly oriented carbon nanotubes -- 4.2.2.4 Directional arrangement of carbon nanoarrays -- 4.2.2.5 Carbon sponges -- 4.2.2.6 Graphite -- 4.2.3 Inorganic thermally conductive fillers -- 4.2.3.1 Boron nitride -- 4.2.3.2 Boron nitride nanosheets (BNNs) -- 4.2.3.3 Boron nitride nanotubes (BNNTs) -- 4.2.3.4 Silicon carbide -- 4.2.3.5 Aluminum nitride -- 4.2.3.6 Boron arsenide -- 4.2.4 Intelligent thermally conductive fillers -- 4.2.4.1 Azobenzene -- 4.2.4.2 Upconversion nanoparticles -- 4.2.4.3 Thermochromic molecules -- Inorganic thermochromic materials -- Organic thermochromic molecules -- 4.3 Intelligent thermally conductive material composite technology -- 4.3.1 Network construction -- 4.3.1.1 Three-dimensional graphene continuous framework.
4.3.1.2 Continuous framework of three-dimensional carbon nanotubes -- 4.3.1.3 Three-dimensional boron nitride continuous framework -- 4.3.1.4 3D metal continuous network -- 4.3.2 Interface modificationa -- 4.3.3 Composite technology -- 4.3.3.1 Blending -- 4.3.3.2 Vacuum-assisted filtration -- 4.3.3.3 Template method -- 4.3.3.4 Equipment-assisted assembly technology -- 4.4 Chapter summary -- References -- Chapter 5 Application of intelligent thermally conductive materials -- 5.1 Intelligent temperature control -- 5.1.1 Intelligent textiles for clothing -- 5.1.1.1 High-grade textiles for regulating thermal radiation properties -- 5.1.1.2 High-grade textiles for regulating heat conduction properties -- 5.1.1.3 Advanced textiles for regulating heat convection properties -- 5.1.2 Temperature intelligent sensing -- 5.1.2.1 Temperature intelligent sensing -- 5.1.2.2 Temperature sensing and control -- 5.2 Temperature intelligent response -- 5.2.1 Intelligent robots -- 5.2.2 Thermal response -- 5.2.3 Other applications -- 5.2.3.1 Thermal interface material (TIM) -- 5.2.3.2 Phase change materials (PCMs) -- 5.2.3.3 Personal thermal management materials -- 5.2.3.4 Intelligent thermally control materials -- 5.2.3.5 Electronic cooling materials -- 5.3 Intelligent temperature switches -- 5.3.1 Azo switches -- 5.3.2 Adaptive switch -- 5.3.2.1 Luminaire cooling equipment -- 5.3.2.2 Blockchain server cooling device -- 5.3.2.3 Thermal expansion and cold contraction automatic steering solar power equipment -- 5.3.2.4 Domestic fire extinguisher using heat expansion and cold contraction -- 5.3.2.5 Induction cooker overflow protection -- 5.3.2.6 Heat expansion and cold contraction cooling device for vehicle hard disk video recorders -- 5.3.2.7 Heat dissipation devices for power cabinets -- 5.4 Other applications -- 5.4.1 Flexible thermal conductive materials.
5.4.2 Fire warning materials -- 5.4.3 Sensing temperature control device -- 5.4.4 Dynamic color application -- 5.4.5 Intelligent packaging technology -- 5.4.6 Steam plugging material -- 5.4.7 Shape memory intelligent devices -- 5.4.8 Bionic robots -- 5.4.9 Battery safety technology -- 5.4.10 Green building -- 5.5 Chapter summary -- References -- Chapter 6 Application of intelligent thermally conductive materials in advanced chips -- 6.1 Current development status of chip cooling -- 6.1.1 Active cooling -- 6.1.1.1 Liquid cooling -- Microchannel liquid cooling -- Liquid spray cooling -- Liquid jet cooling -- 6.1.1.2 Microvapor compression refrigeration -- 6.1.1.3 Thermoelectric refrigeration -- 6.1.2 Passive cooling -- 6.1.2.1 Heat pipe cooling -- 6.1.2.2 Phase change heat storage and dissipation -- 6.2 Design of thermal conductive materials for chips -- 6.2.1 Chiplet technology challenges and thermal conductive material design -- 6.2.1.1 Technical challenges -- 6.2.1.2 Advanced packaging and practice in Chiplet -- 6.2.2 MCM packaging -- 6.2.3 2.5D packaging and thermally conductive material design -- 6.2.3.1 RDL interposer -- 6.2.3.2 Si interposer -- 6.2.3.3 Conceptual design -- 6.2.4 3D packaging and thermally conductive material design -- 6.2.5 Electric thermal coupling problem and heat dissipation solution -- 6.2.5.1 Electrothermal coupling problem -- 6.2.5.2 Cooling solution -- 6.3 Development status -- 6.3.1 Air cooling and heat dissipation -- 6.3.2 Liquid cooling -- 6.3.3 LED lighting -- 6.3.4 Laser devices -- 6.4 Future development trends of chip cooling materials -- 6.5 Chapter summary -- References -- Chapter 7 Conclusion and prospects -- 7.1 Technical bottleneck of intelligent thermally conductive materials -- 7.1.1 Intelligent material process design -- 7.1.1.1 Nanoparticle suspension.
7.1.1.2 Atomic intercalation materials.
Sommario/riassunto: Design and Application of Intelligent Thermally Conductive Materials is a current, comprehensive, reference resource, providing information on the structure, design, and application of these newly developed materials in various contexts, together with an analysis of future trends and applications.
Titolo autorizzato: Design and Application of Intelligent Thermally Conductive Materials  Visualizza cluster
ISBN: 9780443404108
0443404100
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9911054525603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilitĂ  qui