1.

Record Nr.

UNINA9911054525603321

Autore

Feng Wei

Titolo

Design and Application of Intelligent Thermally Conductive Materials

Pubbl/distr/stampa

Chantilly : , : Elsevier, , 2025

©2025

ISBN

9780443404108

0443404100

Edizione

[1st ed.]

Descrizione fisica

1 online resource (349 pages)

Disciplina

620.11296

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Intro -- Design and Application of Intelligent Thermally Conductive Materials -- Copyright -- Contents -- Preface -- Description of contents -- Chapter 1 Overview of thermal conductivity -- 1.1  Thermally conductive materials -- 1.2  Mechanism of thermal conductivity -- 1.3  Influencing factors -- 1.3.1  Thermally conductive fillers -- 1.3.1.1 Single filler -- 1.3.1.2 Composite filler -- 1.3.1.3 Orientation filler -- 1.3.1.4 Three-dimensional (3D) fillers -- 1.3.2  Thermally conductive substrates -- 1.3.2.1 Metal-based thermally conductive materials -- 1.3.2.2 Inorganic, nonmetallic-based thermally conductive materials -- 1.3.2.3 Polymer-based thermally conductive materials -- 1.3.3  Thermally conductive interfaces -- 1.3.3.1 Interface theory -- 1.3.3.2 Interface between filler and matrix -- 1.3.3.3 The contact interface between matrix and filler -- 1.3.3.4 The contact interface between the thermally conductive composite material and the device -- 1.4  Test methods -- 1.4.1  Homeostatic approach -- 1.4.1.1 Thermofluidic meter method -- 1.4.1.2 Plate method (hot plate method) -- 1.4.2  Dynamic approach -- 1.4.2.1 Hot wire method -- 1.4.2.2 Laser method -- 1.5  Research status and industry -- 1.6  Summary of this chapter -- References -- Chapter 2 Overview of intelligent thermally conductive materials -- 2.1  Concept of intelligent thermally conductive materials -- 2.2  Heat transfer mechanism of intelligent thermally conductive materials -- 2.2.1  Phonon conduction



-- 2.2.2  Phonon conduction in intrinsic intelligent thermally conductive materials -- 2.2.3  Phonon conduction of embedded intelligent thermally conductive materials -- 2.3  Influencing factors -- 2.3.1  Ambient temperature -- 2.3.2  Volume morphology -- 2.3.3  External pressure -- 2.4  Classification of intelligent thermally conductive materials.

2.4.1  Metal-based intelligent thermally conductive materials -- 2.4.2  Nonmetallic carbon-based intelligent thermally conductive materials -- 2.4.3  Polymer-based intelligent thermally conductive materials -- 2.4.4  Phase-change intelligent thermally conductive materials -- 2.4.5  Thermal-induced shape memory intelligent materials -- 2.4.6  Thermochromic intelligent materials -- 2.4.7  High thermal conductivity intelligent thermal interface composite material -- 2.5  Summary of this chapter -- References -- Chapter 3 Designing for intelligent performance -- 3.1  Temperature perception -- 3.1.1  Shape memory polymer materials -- 3.1.1.1 Unidirectional shape memory -- 3.1.1.2 Bidirectional shape memory -- 3.1.2  Temperature-sensitive hydrogel material -- 3.1.3  Liquid crystal elastomer material -- 3.2  Intelligent thermally conductive control -- 3.2.1  Nanosuspension materials -- 3.2.2  Phase change materials -- 3.2.3  Atomic intercalation materials -- 3.2.4  Soft material -- 3.2.5  Materials regulated by specific external fields -- 3.3  Temperature-responsive thermal switch -- 3.3.1  Solid-liquid phase change thermal switch -- 3.3.1.1 Graphite/cetane composite materials -- 3.3.1.2 Carbon nanotubes and cetane composite materials -- 3.3.2  Soft matter switch -- 3.3.2.1 Nano polyethylene fiber -- 3.3.2.2 Poly ( N -isopropylacrylamide) hydrogel -- 3.3.3  Metal or inorganic thermal switches -- 3.3.3.1 VO 2 conductor-insulator phase transition -- 3.3.3.2 Liquid gallium-filled carbon nanotubes -- 3.4  Integration of multiple intelligent functions -- 3.4.1  Thermal management sensing materials -- 3.4.2  Thermal management-Infrared materials -- 3.4.3  Thermal management-Phase change materials -- 3.4.4  Thermal management-Self-healing materials -- 3.5  Summary of this chapter -- References -- Chapter 4 Design of intelligent thermally conductive materials.

4.1  Intelligent thermally conductive matrix material design -- 4.1.1  Polymer intelligent thermally conductive matrixes -- 4.1.1.1 Temperature-responsive polymer intelligent matrixes -- 4.1.1.2 Light-responsive polymer intelligent matrixes -- 4.1.1.3 Photochromic polymers -- 4.1.1.4 Electrically responsive polymer intelligent matrixes -- 4.1.1.5 Photothermal-responsive polymer intelligent matrixes -- 4.1.2  Metal intelligent thermally conductive substrates -- 4.1.2.1 Memory metal intelligent substrates -- 4.1.2.2 Thermally responsive metal intelligent substrates -- 4.1.3  Inorganic nonmetallic intelligent thermally conductive matrixes -- 4.1.3.1 Zirconia toughened ceramics -- 4.1.3.2 Dexterous ceramics -- 4.1.3.3 Piezoelectric biomimetic ceramics -- 4.1.3.4 Intelligent cement -- 4.2  Design of intelligent thermally conductive fillers -- 4.2.1  Metal-based thermally conductive fillers -- 4.2.1.1 Solid metal fillers -- Copper -- Silver nanowires -- Aluminum and its oxides -- 4.2.1.2 Liquid metals -- 4.2.2  Carbon-based thermally conductive fillers -- 4.2.2.1 Graphene -- 4.2.2.2 Carbon nanotubes -- 4.2.2.3 Randomly oriented carbon nanotubes -- 4.2.2.4 Directional arrangement of carbon nanoarrays -- 4.2.2.5 Carbon sponges -- 4.2.2.6 Graphite -- 4.2.3  Inorganic thermally conductive fillers -- 4.2.3.1 Boron nitride -- 4.2.3.2 Boron nitride nanosheets (BNNs) -- 4.2.3.3 Boron nitride nanotubes (BNNTs) -- 4.2.3.4 Silicon carbide -- 4.2.3.5 Aluminum nitride -- 4.2.3.6 Boron arsenide -- 4.2.4  Intelligent thermally conductive fillers -- 4.2.4.1



Azobenzene -- 4.2.4.2 Upconversion nanoparticles -- 4.2.4.3 Thermochromic molecules -- Inorganic thermochromic materials -- Organic thermochromic molecules -- 4.3  Intelligent thermally conductive material composite technology -- 4.3.1  Network construction -- 4.3.1.1 Three-dimensional graphene continuous framework.

4.3.1.2 Continuous framework of three-dimensional carbon nanotubes -- 4.3.1.3 Three-dimensional boron nitride continuous framework -- 4.3.1.4 3D metal continuous network -- 4.3.2  Interface modificationa -- 4.3.3  Composite technology -- 4.3.3.1 Blending -- 4.3.3.2 Vacuum-assisted filtration -- 4.3.3.3 Template method -- 4.3.3.4 Equipment-assisted assembly technology -- 4.4  Chapter summary -- References -- Chapter 5 Application of intelligent thermally conductive materials -- 5.1  Intelligent temperature control -- 5.1.1  Intelligent textiles for clothing -- 5.1.1.1 High-grade textiles for regulating thermal radiation properties -- 5.1.1.2 High-grade textiles for regulating heat conduction properties -- 5.1.1.3 Advanced textiles for regulating heat convection properties -- 5.1.2  Temperature intelligent sensing -- 5.1.2.1 Temperature intelligent sensing -- 5.1.2.2 Temperature sensing and control -- 5.2  Temperature intelligent response -- 5.2.1  Intelligent robots -- 5.2.2  Thermal response -- 5.2.3  Other applications -- 5.2.3.1 Thermal interface material (TIM) -- 5.2.3.2 Phase change materials (PCMs) -- 5.2.3.3 Personal thermal management materials -- 5.2.3.4 Intelligent thermally control materials -- 5.2.3.5 Electronic cooling materials -- 5.3  Intelligent temperature switches -- 5.3.1  Azo switches -- 5.3.2  Adaptive switch -- 5.3.2.1 Luminaire cooling equipment -- 5.3.2.2 Blockchain server cooling device -- 5.3.2.3 Thermal expansion and cold contraction automatic steering solar power equipment -- 5.3.2.4 Domestic fire extinguisher using heat expansion and cold contraction -- 5.3.2.5 Induction cooker overflow protection -- 5.3.2.6 Heat expansion and cold contraction cooling device for vehicle hard disk video recorders -- 5.3.2.7 Heat dissipation devices for power cabinets -- 5.4  Other applications -- 5.4.1  Flexible thermal conductive materials.

5.4.2  Fire warning materials -- 5.4.3  Sensing temperature control device -- 5.4.4  Dynamic color application -- 5.4.5  Intelligent packaging technology -- 5.4.6  Steam plugging material -- 5.4.7  Shape memory intelligent devices -- 5.4.8  Bionic robots -- 5.4.9  Battery safety technology -- 5.4.10  Green building -- 5.5  Chapter summary -- References -- Chapter 6 Application of intelligent thermally conductive materials in advanced chips -- 6.1  Current development status of chip cooling -- 6.1.1  Active cooling -- 6.1.1.1 Liquid cooling -- Microchannel liquid cooling -- Liquid spray cooling -- Liquid jet cooling -- 6.1.1.2 Microvapor compression refrigeration -- 6.1.1.3 Thermoelectric refrigeration -- 6.1.2  Passive cooling -- 6.1.2.1 Heat pipe cooling -- 6.1.2.2 Phase change heat storage and dissipation -- 6.2  Design of thermal conductive materials for chips -- 6.2.1  Chiplet technology challenges and thermal conductive material design -- 6.2.1.1 Technical challenges -- 6.2.1.2 Advanced packaging and practice in Chiplet -- 6.2.2  MCM packaging -- 6.2.3  2.5D packaging and thermally conductive material design -- 6.2.3.1 RDL interposer -- 6.2.3.2 Si interposer -- 6.2.3.3 Conceptual design -- 6.2.4  3D packaging and thermally conductive material design -- 6.2.5  Electric thermal coupling problem and heat dissipation solution -- 6.2.5.1 Electrothermal coupling problem -- 6.2.5.2 Cooling solution -- 6.3  Development status -- 6.3.1  Air cooling and heat dissipation -- 6.3.2  Liquid cooling -- 6.3.3  LED lighting -- 6.3.4  Laser devices -- 6.4  Future development trends of chip cooling materials -- 6.5  



Chapter summary -- References -- Chapter 7 Conclusion and prospects -- 7.1  Technical bottleneck of intelligent thermally conductive materials -- 7.1.1  Intelligent material process design -- 7.1.1.1 Nanoparticle suspension.

7.1.1.2 Atomic intercalation materials.

Sommario/riassunto

Design and Application of Intelligent Thermally Conductive Materials is a current, comprehensive, reference resource, providing information on the structure, design, and application of these newly developed materials in various contexts, together with an analysis of future trends and applications.