Vai al contenuto principale della pagina
| Titolo: |
Algebraic geometry and commutative algebra in honor of Masayoshi Nagata . Volume I / / edited by Hiroaki Hijikata [and six others]
|
| Pubblicazione: | Tokyo : , : Academic Press, , [1988] |
| ©1988 | |
| Descrizione fisica: | 1 online resource (417 p.) |
| Disciplina: | 516.35 |
| Soggetto topico: | Geometry, Algebraic - Data processing |
| Persona (resp. second.): | HijikataHiroaki |
| Note generali: | Description based upon print version of record. |
| Nota di bibliografia: | Includes bibliographical references at the end of each chapters. |
| Nota di contenuto: | Front Cover; Algebraic Geometry and Commutative Algebra in Honor of Masayoshi NAGATA; Copyright Page; Foreword; Table of Contents of Volume II; Determinantal Loci and Enumerative Combinatorics of Young Tableaux; 1. Introduction; First Chapter. YOUNG TABLEAUX AND DETERMINANTAL POLYNOMIALS IN BINOMIAL COEFFICIENTS; 2. Tableaux and monomials; 3. Determinantal polynomials of any width; 4. Determinantal polynomials of width two; Second Chapter.ENUMERATION OF YOUNG TABLEAUX; 5. Counting tableaux of any width; 6. Bitableaux; 7. Counting bitableaux; 8. Counting monomials; 9. Bitableaux and monomials |
| Third Chapter.UNIVERSAL DETERMINANTAL IDENTITY10. Preamble; 11. The mixed size case; 12. The cardinality condition; 13. The maximal size case; 14. The basic case; 15. Laplace development; 16. The full depth case; 17. Deduction of the full depth case; 18. The straightening law; 19. Problem; Fourth Chapter.APPLICATIONS TO IDEAL THEORY; 20. Determinantal loci; 21. Vector spaces and homogeneous rings; 22. Standard basis; 23. Second fundamental theorem of invariant theory; 24. Generalized second fundamental theorem of invariant theory; References | |
| 6. Moduli7. Explanations; References; On Rings of Invariants of Finite Linear Groups; 1. Fundamental groups; 2. Proof of Theorem A; 3. Additional results; References; Invariant Differentials; 1. Introduction; 2. Use of the étale slice theorem; 3. The ñnite group case; References; Classification of Polarized Manifoldsof Sectional Genus Two; Introduction; Notation, Convention and Terminology; 1. Classification, first step; 2. The case K ~ (3 - n)L; 3. The case of a hyperquadric fíbration over a curve; 4. Polarized surfaces of sectional genus two; Appendix; References | |
| 12. Proof of Theorem 1 | |
| Sommario/riassunto: | Algebraic Geometry and Commutative Algebra |
| Titolo autorizzato: | Algebraic geometry and commutative algebra in honor of Masayoshi Nagata ![]() |
| ISBN: | 1-4832-6518-8 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910827876403321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |