Vai al contenuto principale della pagina

Big Data Analytics and Information Science for Business and Biomedical Applications II



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Ahmed S. Ejaz Visualizza persona
Titolo: Big Data Analytics and Information Science for Business and Biomedical Applications II Visualizza cluster
Pubblicazione: Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica: 1 online resource (196 p.)
Soggetto topico: Computer science
Information technology industries
Soggetto non controllato: asymptotic bias and risk
bandwidth selection
Bayesian modeling
big data adaptation
brain network
cancer
causal structure learning
chest X-ray images
consistency
correlation
deep learning
dividend estimation
edge-preserving image denoising
FCI algorithm
fMRI
functional connectivity
functional predictor
functional principal component analysis
functional regression
gestational weight
high dimensionality
high-dimensional data
Human Connectome Project
image sequence
infant birth weight
joint modeling
jump regression analysis
LASSO estimation
linear mixed model
linear mixed-effects model
local smoothing
longitudinal data
lung diseases
maternal weight gain
mobile device
multicollinearity
network analysis
nonparametric regression
nonparametric testing
online health community
options markets
PC algorithm
pretest and shrinkage estimation
pretrained neural networks
ridge estimation
social support
sparse group regularization
spatio-temporal data
statistics
transfer learning
wearable device data
weighted least squares
Persona (resp. second.): NathooFarouk
AhmedS. Ejaz
Sommario/riassunto: The analysis of big data in biomedical, business and financial research has drawn much attention from researchers worldwide. This collection of articles aims to provide a platform for an in-depth discussion of novel statistical methods developed for the analysis of Big Data in these areas. Both applied and theoretical contributions to these areas are showcased.
Titolo autorizzato: Big Data Analytics and Information Science for Business and Biomedical Applications II  Visualizza cluster
ISBN: 3-0365-5550-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910637784003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui