Vai al contenuto principale della pagina
Autore: | Ameta Suresh C |
Titolo: | Advanced Oxidation Processes for Wastewater Treatment : Emerging Green Chemical Technology |
Pubblicazione: | San Diego : , : Elsevier Science & Technology, , 2018 |
©2018 | |
Descrizione fisica: | 1 online resource |
Disciplina: | 628.162 |
Soggetto topico: | Water - Aeration |
Water - Purification - Oxidation | |
Sewage - Purification - Oxidation | |
Altri autori: | AmetaRakshit |
Nota di contenuto: | Front Cover -- Advanced Oxidation Processes for WasteWater Treatment -- Copyright Page -- Dedication -- Contents -- List of Contributors -- About the Authors -- Preface -- 1 Introduction -- 1.1 Environment -- 1.2 Pollution -- 1.3 Water Pollution -- 1.4 Wastewater Treatment -- 1.4.1 Primary Treatment -- 1.4.1.1 Phase Separation -- 1.4.1.1.1 Sedimentation -- 1.4.1.1.2 Filtration -- 1.4.2 Secondary Treatment -- 1.4.2.1 Oxidation -- 1.4.2.1.1 Biochemical Oxidation -- 1.4.2.1.2 Chemical Oxidation -- 1.4.2.2 Polishing -- 1.4.3 Tertiary Treatment -- 1.5 Advanced Oxidation Processes -- 1.6 Advantages -- 1.7 Applications -- References -- 2 UV-Hydrogen Peroxide Processes -- 2.1 Introduction -- 2.2 Fundamentals -- 2.2.1 UV Lamps -- 2.2.2 Quartz Sleeve -- 2.2.3 Optical Path on the UV Reactor -- 2.2.4 Effluent Optical Properties and Characteristics -- 2.3 Kinetics -- 2.3.1 UV-H2O2 Oxidation Kinetics -- 2.4 A Simplified Model for Performance Evaluation -- 2.4.1 Fundamental on Reactor Design -- 2.5 UV/H2O2 Oxidation Process Design -- 2.5.1 Effluent Characteristics -- 2.5.2 Bench Scale Evaluation Tests -- 2.5.3 Pilot-Plant Evaluation Units -- 2.6 Practical Applications -- 2.6.1 Slaughterhouse Wastewater -- 2.6.2 Oil-Water Emulsion -- 2.6.3 Pharmaceuticals -- 2.6.4 Dyes -- 2.6.5 Removal of Estrogens -- References -- 3 Fenton and Photo-Fenton Processes -- 3.1 Introduction -- 3.2 Types of Fenton Processes -- 3.2.1 Fenton Processes -- 3.2.2 Photo-Fenton Processes -- 3.3 Electro-Fenton Processes -- 3.4 Sono-Fenton and Sono-Photo-Fenton Processes -- 3.5 Heterogeneous Fenton and Photo-Fenton Processes -- 3.6 Combined (Hybrid) Fenton and Photo-Fenton Processes -- 3.7 Applications -- 3.7.1 Dyes -- 3.7.2 Agrochemicals -- 3.7.3 Pharmaceuticals -- 3.7.4 Petroleum Refinery Effluents -- 3.7.5 Surfactants -- 3.7.6 Leachates -- 3.7.7 Other Pollutants -- 3.8 Recent Developments. |
References -- 4 Ferrioxalate-Mediated Processes -- 4.1 Introduction -- 4.2 The Fenton and Photo-Fenton Reactions -- 4.3 The Ferrioxalate-Mediated Fenton Reaction -- 4.3.1 Influence of pH -- 4.3.2 Iron Complexes with Organic and Inorganic Substances -- 4.3.3 Reaction Mechanisms -- 4.3.4 Optimization -- 4.4 Applications -- 4.4.1 Textile Industry -- 4.4.2 Chemical Industry and Pesticides -- 4.4.3 Pharmaceutical Industry -- 4.4.4 Food and Beverage Industry -- 4.4.5 Water Disinfection -- 4.5 Future Trends -- References -- Further Reading -- 5 Ozone-Based Processes -- 5.1 Introduction -- 5.2 Ozone-Based AOPs -- 5.2.1 Ozone/Hydrogen Peroxide -- 5.2.2 Ozone/UV -- 5.2.3 Catalytic Ozonation -- 5.3 Ozonation By-Products -- 5.4 WasteWater Ozonation and Ozone-Based AOPs -- 5.4.1 Municipal Wastewater Treatment -- 5.4.2 Industrial Wastewater Treatment -- 5.5 Recent Studies -- 5.5.1 Landfill Leachate Treatment -- 5.5.2 Industrial Wastewater Treatment -- 5.5.3 Domestic/Municipal Wastewater Treatment -- 5.5.4 Hospital Wastewater Treatment -- 5.5.5 Ozone-Based Municipal Wastewater Treatment and Water Reuse in the United States -- 5.6 Existing Ozone-Based Advanced Water Reclamation Facilities -- 5.7 Planned Ozone-Based Advanced Water Reclamation Projects -- 5.8 Concluding Remarks -- References -- 6 Photocatalysis -- 6.1 Introduction -- 6.2 Photcatalysis -- 6.2.1 Binary Oxides -- 6.2.2 Ternary and Quaternary Oxides -- 6.3 Modifications -- 6.3.1 Doping -- 6.3.2 Codoping -- 6.3.3 Coupled Semiconductors or Composites -- 6.3.4 Substitution -- 6.3.5 Sensitization -- 6.3.6 Miscellaneous -- 6.3.6.1 Mechanism -- 6.4 Wastewater Treatment -- 6.4.1 Dye Degradation -- 6.4.2 Antimicrobial Activity -- 6.4.3 Organic Pollutants Elimination -- 6.4.4 Removal of Heavy Metal -- 6.4.5 Degradation of Oil in Wastewater -- 6.5 Immobilization -- 6.6 Effect of Morphology -- 6.7 Other Applications. | |
References -- 7 Sonolysis -- 7.1 Introduction -- 7.2 Principles of the Process -- 7.3 Types of Main Reactors (Reaction Systems) -- 7.4 The Effect of Sonochemical Operational Parameters -- 7.4.1 Ultrasound Frequency -- 7.4.2 Dissolved Gas -- 7.4.3 Power Input -- 7.4.4 Effect of Bulk Temperature -- 7.4.5 Pollutant Concentration -- 7.5 Effect of the Chemical Pollutant Nature and Its Transformations Upon Sonochemical Process -- 7.5.1 Structural Effects and Physico-Chemical Properties -- 7.5.1.1 Small Chlorinated Hydrocarbons (SCHs) -- 7.5.1.2 Monocyclic Aromatic Compounds (MACs) -- 7.5.1.3 Polycyclic Aromatic Hydrocarbons (PAHs) -- 7.5.1.4 Perfluoroalkyl Sulfonates (PFAS) and Perfluoroalkyl Acids (PFAA) -- 7.5.1.5 Phthalate Acid Esters (Phthalates) -- 7.5.1.6 Textile Dyes -- 7.5.1.7 Organophosphorus Pesticides (OPPs) -- 7.5.1.8 Pharmaceuticals -- 7.5.2 Sonochemical Transformations of Pollutants and Their Implications -- 7.6 Influence of Water Matrix in the Pollutants Degradation -- 7.6.1 Effect of pH -- 7.6.2 Sonochemical Degradation in Presence of Inorganic Components -- 7.6.3 Sonochemical Degradation of Pollutants in Presence of Other Organic Components -- 7.7 Combination of Sonochemistry With Other Processes -- References -- Further Reading -- 8 Microwave/Hydrogen Peroxide Processes -- 8.1 Introduction -- 8.1.1 Microwave Chemistry -- 8.1.2 Losses Factor or Tan δ -- 8.1.3 Characteristic of Heating Microwave -- 8.2 Wastewater Treatment -- 8.2.1 Energy Intensity -- 8.2.2 pH -- 8.2.3 Pollutants Concentration -- 8.2.4 H2O2 Concentration -- 8.2.5 Radical Scavengers -- 8.3 Enhancement of Sludge Anaerobic Biodegradability -- 8.3.1 Volatile Fatty Acids Production By MW/H2O2 -- 8.3.2 Change of Biological Nutrient in Anaerobic Sludge -- 8.3.3 Biochemical Methane Potential Assays -- 8.3.4 Effect Of H2O2 on Anaerobic Sludge Pretreatment. | |
8.3.5 Inhibitory Effects on Microbial Methabolism -- 8.3.6 Regression Model Optimizing H2O2 -- 8.3.7 Effect of pH on Anaerobic Sludge Pretreatment -- 8.3.8 Fate of Organic Matters -- 8.3.9 Morphological Changes of Sludge -- 8.3.10 Improvement Of EPS Extraction From Anaerobic Sludge -- 8.3.11 Thermodynamic Analysis of WAS Hydrolysis -- 8.3.12 Cost Analysis of Anaerobic Sludge Pretreatment -- 8.3.13 Impact of MW Specific Energy on Anaerobic Sludge Pretreatment -- 8.3.14 Release of Heavy Metals -- 8.3.15 Effects of MW/H2O2 Pretreatment on Anaerobic Sludge Rheology -- References -- Further Reading -- 9 Gamma-ray, X-ray and Electron Beam Based Processes -- 9.1 Introduction -- 9.2 Sources of Radiation-Technological Installations -- 9.3 Disinfection of Wastewaters -- 9.4 Radiolytic Decomposition of Individual Compounds -- 9.5 Chemical Enhancement of Radiolytic Processes -- 9.6 Purification of Wastewaters of Different Origin -- 9.7 Economic Aspects -- 9.8 Conclusions -- Acknowledgments -- References -- 10 Supercritical Water Oxidation -- 10.1 Introduction -- 10.1.1 Density -- 10.1.2 Dielectric Constant -- 10.1.3 Ionic Product -- 10.1.4 Viscosity -- 10.1.5 Heat Capacity -- 10.1.6 Thermal Conductivity -- 10.2 Development of SCWO -- 10.3 Detected Problems -- 10.4 Energy Recovery in SCWO Plants -- 10.5 Economic Aspects -- 10.6 Conclusions -- Acknowledgements -- References -- Further Reading -- 11 Electrochemical Oxidation Processes -- 11.1 Introduction -- 11.2 Electrochemical Oxidation Processes -- 11.2.1 Photoelectrochemical Processes -- 11.2.2 Photoelectro-Fenton (PEF) and Solar Photoelectro-Fenton (SPEF) Processes -- 11.2.3 Photoelectrocatalysis (PEC) -- 11.2.4 Hybrid Combinations of PEF and PEC -- 11.2.5 Sonoelectrochemical Processes -- 11.2.6 Sonoelectrolysis -- 11.2.7 Sonoelectro-Fenton (SEF) -- 11.3 Advantages -- 11.4 Disadvantages -- 11.5 Applications. | |
11.6 Current Scenario -- 11.7 Future Prospects -- References -- 12 Catalytic Wet Peroxide Oxidation -- 12.1 Introduction -- 12.2 Catalysts for CWPO -- 12.2.1 Nonsupported Metal Based Catalysts -- 12.2.1.1 Zero Valent Iron (Fe0) -- 12.2.1.2 Iron Minerals -- 12.2.1.3 Supported or Nonsupported Mixed Metal Oxides -- 12.2.2 Supported Metal Based Catalysts -- 12.2.2.1 Clay-Based Material as Support -- 12.2.2.1.1 Pillared interlayered clays -- 12.2.2.1.2 Alumina -- 12.2.2.1.3 Zeolite -- 12.2.2.2 Carbon-Based Materials as Support -- 12.2.2.2.1 Activated carbon (AC) -- 12.2.2.2.2 Multiwalled carbon nanotubes (MWCNTs) -- 12.2.2.2.3 Graphene-based materials -- 12.2.2.3 Organic-Based Materials as Support -- 12.3 Efficiency of CWPO of Phenol -- 12.4 Effect of the Main Parameters -- 12.4.1 Effect of Initial pH -- 12.4.2 Effect of Temperature -- 12.4.3 Effect of H2O2 Dosage -- 12.4.4 Effect of the Catalyst Load -- 12.5 CWPO Performance -- References -- Index -- Back Cover. | |
Titolo autorizzato: | Advanced Oxidation Processes for Wastewater Treatment |
ISBN: | 0-12-810525-9 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910583367203321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |