LEADER 02662nam 2200409 450 001 9910796954403321 005 20230814223534.0 010 $a3-8325-9083-8 035 $a(CKB)4100000005387723 035 $a(MiAaPQ)EBC5473444 035 $a5c7aad7b-42e4-4b0e-b82c-7583b0dd2d03 035 $a(EXLCZ)994100000005387723 100 $a20180821d2018 uy 0 101 0 $ager 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAufgaben in der Allgemeinen Chemie $eZum Zusammenspiel von chemischem Versta?ndnis und Rechenfa?higkeit /$fLennart Kimpel 210 1$aBerlin :$cLogos Verlag,$d[2018] 210 4$d©2018 215 $a1 online resource (185 pages) $cillustrations 225 0 $aStudien zum Physik- und Chemielernen ;$v249 300 $aPublicationDate: 20180320 311 $a3-8325-4618-9 330 $aLong description: Die Klausuren der Studieneingangsphase, die Chemiestudierenden besonders Probleme bereiten, weisen einen hohen Mathematisierungsgrad auf. Bislang wurden die Probleme durch die Mathematisierung in der Chemie jedoch nur wenig untersucht. Es ist bekannt, dass ein chemischer Kontext zu einer starken Reduktion der Lösungswahrscheinlichkeit von Rechenaufgaben führt. Ein Fehlen von chemischem Verständnis wurde in diesem Zusammenhang ebenfalls festgestellt. In der vorliegenden Studie war daher die Identifikation verschiedener schwierigkeitserzeugender Faktoren bei der Bearbeitung chemischer Rechenaufgaben das Ziel. Durch die Verwendung verschiedener Tests (mathematische Fähigkeiten, chemisches Rechnen, Formelkenntnis, Erkennen der benötigten Formel sowie Fachwissen) konnten mehrere Problembereiche beschrieben werden: Entgegen einer weit verbreiteten Annahme waren die mathematischen Fähigkeiten der Studierenden für die Anforderungen der Allgemeinen Chemie ausreichend. Der Einsatz dieser Fähigkeiten in einem chemischen Zusammenhang bereitete jedoch Probleme. Hinzu kommen eine mangelnde Kenntnis und eine fehlerhafte Anwendung chemischer Formeln. Als stärkster Prädiktor für das erfolgreiche Bearbeiten einer chemischen Rechenaufgabe wurde das Verstehen der chemischen Zusammenhänge identifiziert. Zur weitergehenden Analyse wurden Begleitinstrumente herangezogen. 606 $aChemistry$xStudy and teaching 615 0$aChemistry$xStudy and teaching. 676 $a540.71 700 $aKimpel$b Lennart$01519210 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910796954403321 996 $aAufgaben in der Allgemeinen Chemie$93757199 997 $aUNINA LEADER 10987oam 22005893 450 001 9910583367203321 005 20240506141532.0 010 $a9780128105252 010 $a0128105259 035 $a(CKB)3800000000419852 035 $a(PPN)233366520 035 $a(FR-PaCSA)88864542 035 $a(MiAaPQ)EBC5303036 035 $a(FRCYB88864542)88864542 035 $a(BIP)57124876 035 $a(BIP)60504996 035 $a(EXLCZ)993800000000419852 100 $a20210609d2018 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdvanced Oxidation Processes for Wastewater Treatment $eEmerging Green Chemical Technology 210 1$aSan Diego :$cElsevier Science & Technology,$d2018. 210 4$d©2018. 215 $a1 online resource 311 08$a9780128104996 311 08$a0128104996 327 $aFront Cover -- Advanced Oxidation Processes for WasteWater Treatment -- Copyright Page -- Dedication -- Contents -- List of Contributors -- About the Authors -- Preface -- 1 Introduction -- 1.1 Environment -- 1.2 Pollution -- 1.3 Water Pollution -- 1.4 Wastewater Treatment -- 1.4.1 Primary Treatment -- 1.4.1.1 Phase Separation -- 1.4.1.1.1 Sedimentation -- 1.4.1.1.2 Filtration -- 1.4.2 Secondary Treatment -- 1.4.2.1 Oxidation -- 1.4.2.1.1 Biochemical Oxidation -- 1.4.2.1.2 Chemical Oxidation -- 1.4.2.2 Polishing -- 1.4.3 Tertiary Treatment -- 1.5 Advanced Oxidation Processes -- 1.6 Advantages -- 1.7 Applications -- References -- 2 UV-Hydrogen Peroxide Processes -- 2.1 Introduction -- 2.2 Fundamentals -- 2.2.1 UV Lamps -- 2.2.2 Quartz Sleeve -- 2.2.3 Optical Path on the UV Reactor -- 2.2.4 Effluent Optical Properties and Characteristics -- 2.3 Kinetics -- 2.3.1 UV-H2O2 Oxidation Kinetics -- 2.4 A Simplified Model for Performance Evaluation -- 2.4.1 Fundamental on Reactor Design -- 2.5 UV/H2O2 Oxidation Process Design -- 2.5.1 Effluent Characteristics -- 2.5.2 Bench Scale Evaluation Tests -- 2.5.3 Pilot-Plant Evaluation Units -- 2.6 Practical Applications -- 2.6.1 Slaughterhouse Wastewater -- 2.6.2 Oil-Water Emulsion -- 2.6.3 Pharmaceuticals -- 2.6.4 Dyes -- 2.6.5 Removal of Estrogens -- References -- 3 Fenton and Photo-Fenton Processes -- 3.1 Introduction -- 3.2 Types of Fenton Processes -- 3.2.1 Fenton Processes -- 3.2.2 Photo-Fenton Processes -- 3.3 Electro-Fenton Processes -- 3.4 Sono-Fenton and Sono-Photo-Fenton Processes -- 3.5 Heterogeneous Fenton and Photo-Fenton Processes -- 3.6 Combined (Hybrid) Fenton and Photo-Fenton Processes -- 3.7 Applications -- 3.7.1 Dyes -- 3.7.2 Agrochemicals -- 3.7.3 Pharmaceuticals -- 3.7.4 Petroleum Refinery Effluents -- 3.7.5 Surfactants -- 3.7.6 Leachates -- 3.7.7 Other Pollutants -- 3.8 Recent Developments. 327 $aReferences -- 4 Ferrioxalate-Mediated Processes -- 4.1 Introduction -- 4.2 The Fenton and Photo-Fenton Reactions -- 4.3 The Ferrioxalate-Mediated Fenton Reaction -- 4.3.1 Influence of pH -- 4.3.2 Iron Complexes with Organic and Inorganic Substances -- 4.3.3 Reaction Mechanisms -- 4.3.4 Optimization -- 4.4 Applications -- 4.4.1 Textile Industry -- 4.4.2 Chemical Industry and Pesticides -- 4.4.3 Pharmaceutical Industry -- 4.4.4 Food and Beverage Industry -- 4.4.5 Water Disinfection -- 4.5 Future Trends -- References -- Further Reading -- 5 Ozone-Based Processes -- 5.1 Introduction -- 5.2 Ozone-Based AOPs -- 5.2.1 Ozone/Hydrogen Peroxide -- 5.2.2 Ozone/UV -- 5.2.3 Catalytic Ozonation -- 5.3 Ozonation By-Products -- 5.4 WasteWater Ozonation and Ozone-Based AOPs -- 5.4.1 Municipal Wastewater Treatment -- 5.4.2 Industrial Wastewater Treatment -- 5.5 Recent Studies -- 5.5.1 Landfill Leachate Treatment -- 5.5.2 Industrial Wastewater Treatment -- 5.5.3 Domestic/Municipal Wastewater Treatment -- 5.5.4 Hospital Wastewater Treatment -- 5.5.5 Ozone-Based Municipal Wastewater Treatment and Water Reuse in the United States -- 5.6 Existing Ozone-Based Advanced Water Reclamation Facilities -- 5.7 Planned Ozone-Based Advanced Water Reclamation Projects -- 5.8 Concluding Remarks -- References -- 6 Photocatalysis -- 6.1 Introduction -- 6.2 Photcatalysis -- 6.2.1 Binary Oxides -- 6.2.2 Ternary and Quaternary Oxides -- 6.3 Modifications -- 6.3.1 Doping -- 6.3.2 Codoping -- 6.3.3 Coupled Semiconductors or Composites -- 6.3.4 Substitution -- 6.3.5 Sensitization -- 6.3.6 Miscellaneous -- 6.3.6.1 Mechanism -- 6.4 Wastewater Treatment -- 6.4.1 Dye Degradation -- 6.4.2 Antimicrobial Activity -- 6.4.3 Organic Pollutants Elimination -- 6.4.4 Removal of Heavy Metal -- 6.4.5 Degradation of Oil in Wastewater -- 6.5 Immobilization -- 6.6 Effect of Morphology -- 6.7 Other Applications. 327 $aReferences -- 7 Sonolysis -- 7.1 Introduction -- 7.2 Principles of the Process -- 7.3 Types of Main Reactors (Reaction Systems) -- 7.4 The Effect of Sonochemical Operational Parameters -- 7.4.1 Ultrasound Frequency -- 7.4.2 Dissolved Gas -- 7.4.3 Power Input -- 7.4.4 Effect of Bulk Temperature -- 7.4.5 Pollutant Concentration -- 7.5 Effect of the Chemical Pollutant Nature and Its Transformations Upon Sonochemical Process -- 7.5.1 Structural Effects and Physico-Chemical Properties -- 7.5.1.1 Small Chlorinated Hydrocarbons (SCHs) -- 7.5.1.2 Monocyclic Aromatic Compounds (MACs) -- 7.5.1.3 Polycyclic Aromatic Hydrocarbons (PAHs) -- 7.5.1.4 Perfluoroalkyl Sulfonates (PFAS) and Perfluoroalkyl Acids (PFAA) -- 7.5.1.5 Phthalate Acid Esters (Phthalates) -- 7.5.1.6 Textile Dyes -- 7.5.1.7 Organophosphorus Pesticides (OPPs) -- 7.5.1.8 Pharmaceuticals -- 7.5.2 Sonochemical Transformations of Pollutants and Their Implications -- 7.6 Influence of Water Matrix in the Pollutants Degradation -- 7.6.1 Effect of pH -- 7.6.2 Sonochemical Degradation in Presence of Inorganic Components -- 7.6.3 Sonochemical Degradation of Pollutants in Presence of Other Organic Components -- 7.7 Combination of Sonochemistry With Other Processes -- References -- Further Reading -- 8 Microwave/Hydrogen Peroxide Processes -- 8.1 Introduction -- 8.1.1 Microwave Chemistry -- 8.1.2 Losses Factor or Tan ? -- 8.1.3 Characteristic of Heating Microwave -- 8.2 Wastewater Treatment -- 8.2.1 Energy Intensity -- 8.2.2 pH -- 8.2.3 Pollutants Concentration -- 8.2.4 H2O2 Concentration -- 8.2.5 Radical Scavengers -- 8.3 Enhancement of Sludge Anaerobic Biodegradability -- 8.3.1 Volatile Fatty Acids Production By MW/H2O2 -- 8.3.2 Change of Biological Nutrient in Anaerobic Sludge -- 8.3.3 Biochemical Methane Potential Assays -- 8.3.4 Effect Of H2O2 on Anaerobic Sludge Pretreatment. 327 $a8.3.5 Inhibitory Effects on Microbial Methabolism -- 8.3.6 Regression Model Optimizing H2O2 -- 8.3.7 Effect of pH on Anaerobic Sludge Pretreatment -- 8.3.8 Fate of Organic Matters -- 8.3.9 Morphological Changes of Sludge -- 8.3.10 Improvement Of EPS Extraction From Anaerobic Sludge -- 8.3.11 Thermodynamic Analysis of WAS Hydrolysis -- 8.3.12 Cost Analysis of Anaerobic Sludge Pretreatment -- 8.3.13 Impact of MW Specific Energy on Anaerobic Sludge Pretreatment -- 8.3.14 Release of Heavy Metals -- 8.3.15 Effects of MW/H2O2 Pretreatment on Anaerobic Sludge Rheology -- References -- Further Reading -- 9 Gamma-ray, X-ray and Electron Beam Based Processes -- 9.1 Introduction -- 9.2 Sources of Radiation-Technological Installations -- 9.3 Disinfection of Wastewaters -- 9.4 Radiolytic Decomposition of Individual Compounds -- 9.5 Chemical Enhancement of Radiolytic Processes -- 9.6 Purification of Wastewaters of Different Origin -- 9.7 Economic Aspects -- 9.8 Conclusions -- Acknowledgments -- References -- 10 Supercritical Water Oxidation -- 10.1 Introduction -- 10.1.1 Density -- 10.1.2 Dielectric Constant -- 10.1.3 Ionic Product -- 10.1.4 Viscosity -- 10.1.5 Heat Capacity -- 10.1.6 Thermal Conductivity -- 10.2 Development of SCWO -- 10.3 Detected Problems -- 10.4 Energy Recovery in SCWO Plants -- 10.5 Economic Aspects -- 10.6 Conclusions -- Acknowledgements -- References -- Further Reading -- 11 Electrochemical Oxidation Processes -- 11.1 Introduction -- 11.2 Electrochemical Oxidation Processes -- 11.2.1 Photoelectrochemical Processes -- 11.2.2 Photoelectro-Fenton (PEF) and Solar Photoelectro-Fenton (SPEF) Processes -- 11.2.3 Photoelectrocatalysis (PEC) -- 11.2.4 Hybrid Combinations of PEF and PEC -- 11.2.5 Sonoelectrochemical Processes -- 11.2.6 Sonoelectrolysis -- 11.2.7 Sonoelectro-Fenton (SEF) -- 11.3 Advantages -- 11.4 Disadvantages -- 11.5 Applications. 327 $a11.6 Current Scenario -- 11.7 Future Prospects -- References -- 12 Catalytic Wet Peroxide Oxidation -- 12.1 Introduction -- 12.2 Catalysts for CWPO -- 12.2.1 Nonsupported Metal Based Catalysts -- 12.2.1.1 Zero Valent Iron (Fe0) -- 12.2.1.2 Iron Minerals -- 12.2.1.3 Supported or Nonsupported Mixed Metal Oxides -- 12.2.2 Supported Metal Based Catalysts -- 12.2.2.1 Clay-Based Material as Support -- 12.2.2.1.1 Pillared interlayered clays -- 12.2.2.1.2 Alumina -- 12.2.2.1.3 Zeolite -- 12.2.2.2 Carbon-Based Materials as Support -- 12.2.2.2.1 Activated carbon (AC) -- 12.2.2.2.2 Multiwalled carbon nanotubes (MWCNTs) -- 12.2.2.2.3 Graphene-based materials -- 12.2.2.3 Organic-Based Materials as Support -- 12.3 Efficiency of CWPO of Phenol -- 12.4 Effect of the Main Parameters -- 12.4.1 Effect of Initial pH -- 12.4.2 Effect of Temperature -- 12.4.3 Effect of H2O2 Dosage -- 12.4.4 Effect of the Catalyst Load -- 12.5 CWPO Performance -- References -- Index -- Back Cover. 330 $aAdvanced Oxidation Processes for Waste Water Treatment: Emerging Green Chemical Technology is a complete resource covering the fundamentals and applications of all Advanced Oxidation Processes (AOPs). This book presents the most up-to-date research on AOPs and makes the argument that AOPs offer an eco-friendly method of wastewater treatment. In addition to an overview of the fundamentals and applications, it details the reactive species involved, along with sections on reactor designs, thus helping readers understand and implement these methods.- Presents in-depth coverage of all types of Advanced Oxidation Processes, including Super Critical Water Oxidation, Photo-Fenton and Like Processes- Includes a fundamental review, applications, reactive species and reactor designs- Reviews applications across waste types, including industrial waste, domestic and municipal sewage, and hospital wastes 606 $aWater$xAeration 606 $aWater$xPurification$xOxidation 606 $aSewage$xPurification$xOxidation 615 0$aWater$xAeration. 615 0$aWater$xPurification$xOxidation. 615 0$aSewage$xPurification$xOxidation. 676 $a628.162 676 $a628.162 700 $aAmeta$b Suresh C$01739628 701 $aAmeta$b Rakshit$0929948 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910583367203321 996 $aAdvanced Oxidation Processes for Wastewater Treatment$94163766 997 $aUNINA