Vai al contenuto principale della pagina

Machine learning for protein subcellular localization prediction / / Shibiao Wan, Man-Wai Mak



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Wan Shibiao Visualizza persona
Titolo: Machine learning for protein subcellular localization prediction / / Shibiao Wan, Man-Wai Mak Visualizza cluster
Pubblicazione: Berlin, Germany ; ; Boston, Massachusetts : , : De Gruyter, , 2015
©2015
Descrizione fisica: 1 online resource (210 p.)
Disciplina: 572/.696
Soggetto topico: Proteins - Physiological transport - Data processing
Machine learning
Probabilities - Data processing
Soggetto genere / forma: Electronic books.
Classificazione: WC 7700
Persona (resp. second.): MakM. W.
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Front matter -- Preface -- Contents -- List of Abbreviations -- 1. Introduction -- 2. Overview of subcellular localization prediction -- 3. Legitimacy of using gene ontology information -- 4. Single-location protein subcellular localization -- 5. From single- to multi-location -- 6. Mining deeper on GO for protein subcellular localization -- 7. Ensemble random projection for large-scale predictions -- 8. Experimental setup -- 9. Results and analysis -- 10. Properties of the proposed predictors -- 11. Conclusions and future directions -- A. Webservers for protein subcellular localization -- B. Support vector machines -- C. Proof of no bias in LOOCV -- D. Derivatives for penalized logistic regression -- Bibliography -- Index
Sommario/riassunto: Comprehensively covers protein subcellular localization from single-label prediction to multi-label prediction, and includes prediction strategies for virus, plant, and eukaryote species. Three machine learning tools are introduced to improve classification refinement, feature extraction, and dimensionality reduction.
Titolo autorizzato: Machine learning for protein subcellular localization prediction  Visualizza cluster
ISBN: 1-5015-0150-X
1-5015-0152-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910460442103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui