Vai al contenuto principale della pagina
| Autore: |
Burdzy, Krzysztof
|
| Titolo: |
Brownian motion and its applications to mathematical analysis : École d'été de probabilités de Saint-Flour XLIII - 2013 / Krzysztof Burdzy
|
| Pubblicazione: | Cham [Switzerland] : Springer, c2014 |
| Descrizione fisica: | xii, 137 p. : ill. (some color) ; 24 cm |
| Disciplina: | 530.475 |
| Soggetto topico: | Brownian motion processes |
| Mathematical analysis | |
| Stochastic analysis | |
| Classificazione: | AMS 60-02 |
| AMS 60G17 | |
| AMS 60H30 | |
| AMS 60J65 | |
| LC QA274.75 | |
| Altri autori (Convegni): | École d'été de probabilités de Saint-Flour <43. ; 2013 ; Saint Flour, France> |
| Nota di contenuto: | 1. Brownian motion ; 2. Probabilistic proofs of classical theorems ; 3. Overview of the "hot spots" problem ; 4. Neumann eigenfunctions and eigenvalues ; 5. Synchronous and mirror couplings ; 6. Parabolic boundary Harnack principle ; 7. Scaling coupling ; 8. Nodal lines ; 9. Neumann heat kernel monotonicity ; 10. Reflected Brownian motion in time dependent domains |
| Sommario/riassunto: | These lecture notes provide an introduction to the applications of Brownian motion to analysis and, more generally, connections between Brownian motion and analysis. Brownian motion is a well-suited model for a wide range of real random phenomena, from chaotic oscillations of microscopic objects, such as flower pollen in water, to stock market fluctuations. It is also a purely abstract mathematical tool which can be used to prove theorems in "deterministic" fields of mathematics. The notes include a brief review of Brownian motion and a section on probabilistic proofs of classical theorems in analysis. The bulk of the notes are devoted to recent (post-1990) applications of stochastic analysis to Neumann eigenfunctions, Neumann heat kernel and the heat equation in time-dependent domains |
| ISBN: | 9783319043937 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 991002949319707536 |
| Lo trovi qui: | Univ. del Salento |
| Opac: | Controlla la disponibilità qui |