LEADER 02612nam a2200361 a 4500 001 991002949319707536 008 160721t20142014sz a b 000 0 eng d 020 $a9783319043937 035 $ab14258845-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 0 $a530.475$223 084 $aAMS 60-02 084 $aAMS 60G17 084 $aAMS 60H30 084 $aAMS 60J65 084 $aLC QA274.75$b.B87 100 1 $aBurdzy, Krzysztof$059868 245 10$aBrownian motion and its applications to mathematical analysis :$bÉcole d'été de probabilités de Saint-Flour XLIII - 2013 /$cKrzysztof Burdzy 260 $aCham [Switzerland] :$bSpringer,$cc2014 300 $axii, 137 p. :$bill. (some color) ;$c24 cm 440 0$aLecture notes in mathematics,$x0075-8434 ;$v2106 505 0 $g1.$tBrownian motion ;$g2.$tProbabilistic proofs of classical theorems ;$g3.$tOverview of the "hot spots" problem ;$g4.$tNeumann eigenfunctions and eigenvalues ;$g5.$tSynchronous and mirror couplings ;$g6.$tParabolic boundary Harnack principle ;$g7.$tScaling coupling ;$g8.$tNodal lines ;$g9.$tNeumann heat kernel monotonicity ;$g10.$tReflected Brownian motion in time dependent domains 520 $aThese lecture notes provide an introduction to the applications of Brownian motion to analysis and, more generally, connections between Brownian motion and analysis. Brownian motion is a well-suited model for a wide range of real random phenomena, from chaotic oscillations of microscopic objects, such as flower pollen in water, to stock market fluctuations. It is also a purely abstract mathematical tool which can be used to prove theorems in "deterministic" fields of mathematics. The notes include a brief review of Brownian motion and a section on probabilistic proofs of classical theorems in analysis. The bulk of the notes are devoted to recent (post-1990) applications of stochastic analysis to Neumann eigenfunctions, Neumann heat kernel and the heat equation in time-dependent domains 650 0$aBrownian motion processes 650 0$aMathematical analysis 650 0$aStochastic analysis 711 2 $aÉcole d'été de probabilités de Saint-Flour$n<43. ;$d2013 ;$cSaint Flour, France> 907 $a.b14258845$b11-11-16$c21-07-16 912 $a991002949319707536 945 $aLE013 60-XX BUR11 (2014)$g1$i2013000293479$lle013$op$pE36.39$q-$rl$s- $t0$u0$v0$w0$x0$y.i15787035$z11-11-16 996 $aBrownian motion and its applications to mathematical analysis$9821272 997 $aUNISALENTO 998 $ale013$b21-07-16$cm$da $e-$feng$gsz $h0$i0