Vai al contenuto principale della pagina
| Titolo: |
The X-ray standing wave technique : principles and applications / / editors, Jorg Zegenhagen, Alexander Kazimirov
|
| Pubblicazione: | Singapore ; ; Hackensack, NJ, : World Scientific, c2013 |
| New Jersey : , : World Scientific, , [2013] | |
| �2013 | |
| Edizione: | 1st ed. |
| Descrizione fisica: | 1 online resource (557 pages) |
| Disciplina: | 530.141 |
| Soggetto topico: | Electromagnetic waves |
| Standing waves | |
| Altri autori: |
ZegenhagenJörg
KazimirovAlexander
|
| Nota di bibliografia: | Includes bibliographical references and index. |
| Nota di contenuto: | Intro -- CONTENTS -- Dedication -- Preface -- Acronyms -- Part I -- 1. X-Ray Standing Waves in a Nutshell Jorg Zegenhagen and Alexander Kazimirov -- 1.1 Introduction -- 1.2 Historical Background -- 1.3 The Basic Principle of the XSW Technique -- 1.4 How to Create a Suitable XSW -- 1.5 X-Ray Scattering -- 1.6 Photo-Excitation and Dipole Approximation -- 1.7 Photo-Excitation and Decay Channels: Which Signal to Detect -- 1.8 Structural Analysis with XSW: Photo-Absorption, XSW Yield, and Fourier Analysis -- 1.9 Simple Structural Analysis in Case of an XSW Excited by Bragg Reflection -- 1.10 XSW Yield from the Bulk -- 1.11 Preview -- References -- 2. Dynamical Theory of X-ray Standing Waves in Perfect Crystals Andre Authier -- 2.1 Introduction -- 2.2 Diffracted Waves in the Reflection and Transmission Geometries -- 2.2.1 Propagation equation -- 2.2.2 Fundamental equations of dynamical theory -- 2.2.3 Dispersion surface in the infinite medium -- 2.2.3.1 Non-absorbing crystals -- 2.2.3.2 Absorbing crystals -- 2.2.4 Determination of the tiepoints -- 2.2.5 Deviation parameter -- 2.2.6 Amplitudes of the diffracted waves -- 2.2.6.1 Bragg or reflection geometry -- 2.2.6.2 Laue or transmission geometry -- 2.3 Standing Wave Field in the Reflection (Bragg) Geometry -- 2.4 Standing Wave Field in the Transmission (Laue) Geometry -- 2.5 Applications of X-ray Standing Waves in the Laue Geometry -- 2.5.1 Introduction -- 2.5.2 Integrated yield -- 2.5.3 Angular dependence of the X-ray fluorescence integrated yield -- References -- 3. X-Ray Standing Wave in Complex Crystal Structures Victor Kohn -- 3.1 Introduction -- 3.2 Solution for One Crystal Layer -- 3.2.1 Local reflection amplitude -- 3.2.2 Local transmission amplitude -- 3.3 Secondary Radiation Yield -- 3.4 Method of the Computer Simulation -- 3.4.1 Example: InGaP/GaAs(111). |
| 3.5 Brief Historical Overview and Summary -- References -- 4. X-Ray Standing Wave in a Backscattering Geometry D. P. Woodruff -- References -- 5. X-Ray Standing Wave at the Total Reflection Condition Michael J. Bedzyk -- 5.1 Introduction -- 5.2 X-Ray Transmission and Reflection at a Single Interface -- 5.3 The E-Field Intensity -- 5.4 X-Ray Fluorescence Yield from an Atomic Layer within a Thin Film -- 5.5 Fourier Inversion for a Direct Determination of ρ(z ) -- 5.6 The Effect of Coherence on X-Ray Interference Fringe Visibility -- Acknowledgments -- References -- 6. X-Ray Standing Wave at Grazing Incidence and Exit Osami Sakata and Terrence Jach -- 6.1 Introduction -- 6.2 Geometry, Waves, and Dispersion Surface -- 6.3 The Standing Wave Field Above a Surface -- 6.4 Applications -- References -- 7. X-Ray Standing Wave in Multilayers Michael J. Bedzyk and Joseph A. Libera -- 7.1 Introduction -- 7.2 Calculating the X-Ray Fields within a Multilayer Structure -- 7.3 Analysis of the XRF Yield -- Acknowledgments -- References -- 8. Kinematical X-ray Standing Waves Martin Tolkiehn and Dmitri V. Novikov -- 8.1 Introduction -- 8.2 Theory -- 8.3 Application of KXSW to Mosaic Cu3Au -- 8.4 Conclusions -- Acknowledgments -- References -- 9. X-ray Waveguides Ianna Bukreev, Alessia Cedola, Daniele Pellicia, Werner Jark and Stefano Lagomarsino -- 9.1 Introduction -- 9.2 X-Ray WG Basic Principles -- 9.2.1 Resonant beam coupling -- 9.2.2 Front coupling with pre-reflection -- 9.2.3 Direct front coupling -- 9.2.4 Comparison of RBC and FC WGs -- 9.3 X-Ray WG Fabrication Procedures -- 9.4 Application of X-Ray WGs -- 9.5 Conclusions -- Acknowledgments -- References -- 10. Compton Scattering from X-Ray Standing Wave Field Vladimir Bushuev -- 10.1 Introduction: Incoherent Compton Scattering -- 10.2 Coherent Compton Effect in the Bragg Geometry. | |
| 10.3 Coherent Compton Effect and Electron Density Distribution -- 10.4 Coherent Compton Effect in the Laue Geometry -- Acknowledgments -- References -- 11. Theory of Photoelectron Emission from an X-Ray Interference Field Ivan A. Vartanyants and Jorg Zegenhagen -- 11.1 Introduction -- 11.2 Photoelectron Scattering Process by a Single Electromagnetic Wave -- 11.2.1 Non-dipole contributions -- 11.3 Generalized Expression for the Photoelectron Yield from Atoms within the XSW -- 11.4 Matrix Elements for Multipole Terms: General Expression -- 11.5 Integral Photoelectron Emission from an Interference Field -- 11.6 Angular-Resolved Photoelectron Emission in the Dipole Approximation -- 11.7 Angular-Resolved Photoelectron Emission in the Dipole-Quadrupole Approximation -- 11.7.1 s-initial state -- 11.7.2 p-initial state -- 11.8 Theory of Valence-Electron Emission by an X-Ray Standing Wave -- 11.9 Summary -- References -- 12. Site-Specific X-Ray Photoelectron Spectroscopy using X-Ray Standing Waves Joseph C. Woicik -- 12.1 Introduction -- 12.2 XSW Emission of Valence Electrons: The Dipole Approximation and the Case of Crystalline Copper -- 12.3 XSW Analysis of Valence Electron Emission for Homopolar and Heteropolar Crystals: Valence-Charge Asymmetry and the Cases of Crystalline Ge and GaAs -- 12.4 High-Resolution XSW Analysis of the GaAs Valence Band: Experimental Determination of Photoelectron Partial Density of States -- 12.5 Conclusion -- Acknowledgments -- References -- 13. Experimental Basics Alexander Kazimirov and Jorg Zegenhagen -- 13.1 Introduction -- 13.2 X-Ray Sources -- 13.2.1 X-ray tubes -- 13.3 Synchrotron Radiation -- 13.3.1 Introduction -- 13.3.2 Properties of synchrotron radiation -- 13.4 Beam Conditioning -- 13.4.1 DuMond diagram -- 13.4.2 Laboratory XSW optical set-up -- 13.4.3 XSW set-up at a synchrotron source. | |
| 13.5 Detection of Secondary Radiation -- 13.5.1 Detection of fluorescence radiation -- 13.5.1.1 Introduction -- 13.5.1.2 Semiconductor detector -- 13.5.2 Detection of electrons -- 13.5.2.1 Introduction -- 13.5.2.2 Electron multipliers -- 13.5.2.3 Gas proportional counter -- 13.5.2.4 Electrostatic electron analyzers -- 13.6 Data Acquisition and Preliminary Analysis -- 13.7 The Beamline ID32 at the ESRF: A Dedicated XSW Station -- 13.8 Summary -- References -- Part II -- Introduction to Part 2 -- 14. XSW Imaging Michael J. Bedzyk and Paul Fenter -- 14.1 Introduction -- 14.2 1D Profiling of Lattice Impurity Sites -- 14.3 3D Map of Surface Adsorbate Atoms -- 14.4 Experimental Description -- 14.5 Conclusion -- Acknowledgments -- References -- 15. X-Ray Standing Waves in Quasicrystals: Atomic Positions in an Aperiodic Lattice Terrence Jach -- 15.1 Introduction -- 15.2 One-Dimensional Quasi-Lattices -- 15.3 Dynamical Diffraction from 1D Quasi-Lattices -- 15.4 Centrosymmetry versus Non-Centrosymmetry -- 15.5 Quasicrystals in Three Dimensions -- 15.6 X-Ray Standing Wave Measurements -- 15.7 Conclusions and Remarks -- References -- 16. X-Ray Standing Waves in Thin Crystals: Probing the Polarity of Thin Epitaxial Films Alexander Kazimirov, Jorg Zegenhagen, Tien-Lin and Michael Bedzyk -- 16.1 Introduction -- 16.2 GaN Thin Films -- 16.3 PTO and PZT Ferroelectric Thin Films -- 16.4 Conclusions -- References -- 17. Isotopic Effect on the Lattice Constant of Germanium and Silicon Alexander Kazimirov, Jorg Zegenhagen, Evgeny Sozontov, Victor Kohn and Manuel Cardona -- 17.1 Introduction -- 17.2 Application of XSW for Precise Relative Lattice Constant Measurements -- 17.3 Experiment -- 17.3.1 Lattice constant measurements for germanium: natGe/76Ge and 70Ge/76Ge -- 17.3.2 Lattice constant measurement for silicon: nat Si/ 30Si -- 17.4 Conclusions -- References. | |
| 18. Biomembrane Models and Organic Monolayers on Liquid and Solid Surfaces S. I. Zheludeva, N. N. Novikova, M. V. Kovalchuk, N. D. Stepina, E. A. Yurieva, E. YU. Tereschenko and O. V. Konovalov -- 18.1 Introduction -- 18.2 Lipid-Protein Films on a Solid Substrate -- 18.3 Langmuir Layer on a Liquid Surface -- 18.4 Molecular Organization in Lipid-Protein Systems on Liquid Surface -- References -- 19. Applications of XSW in Interfacial Geochemistry Paul Fenter -- 19.1 Introduction -- 19.2 Cation Adsorption at the Mineral-Water Interface -- 19.3 Imaging Mineral Surface Terminations with XSW -- 19.4 Probing the Reactivity of Biofilm-Coated Minerals -- 19.5 Conclusions -- Acknowledgments -- References -- 20. Complex Surface Phases of Sb on Si(113): Combining XSW and Density Functional Theory M. Siebert, Th. Schmidt, J. I. Flege and J. Falta -- 20.1 Introduction -- 20.2 Experimental and Computational Details -- 20.3 Results and Discussion -- 20.4 Conclusion -- References -- 21. X-ray Standing Wave Analysis of Non-commensurate Adsorbate Structures Produced by Ga Adsorption on Ge(111) Jorg Zegenhagen -- 21.1 Introduction -- 21.2 Discommensurate Reconstructions -- 21.3 XSW and STM Investigations of the Ge(111):Ga γ- and β-phase -- 21.4 Conclusions -- References -- 22. Photon Stimulated Desorption Jan Ingo Flege, Thomas Schmidt, Jens Falta, Alexander Hille and Gerhard Materlik -- 22.1 Introduction -- 22.2 Fundamentals -- 22.3 Experimental Procedure -- 22.4 Results and Discussion -- 22.5 Conclusions -- References -- 23. Depth-Profiling of Marker Layers using X-Ray Waveguides Ajay Gupta -- 23.1 Introduction -- 23.2 Depth Profiling of Thin Marker Layers -- 23.3 Depth Profiling of Isotopic Marker Layers -- References. | |
| 24. Coherent Diffraction Imaging with Hard X-Ray Waveguides Liberato de Caro and Cinzia Giannini, Daniele Pelliccia, Alessia Cedola and Stefano Lagomarsino. | |
| Sommario/riassunto: | This volume presents the theoretical background, technical requirements and distinguished experimental highlights of the X-ray standing wave (XSW) technique. It equips scientists with the necessary information and knowledge to understand and use the XSW technique in practically all applications. |
| Titolo autorizzato: | The X-ray standing wave technique ![]() |
| ISBN: | 9789812279007 |
| 9781299462144 | |
| 1299462146 | |
| 9789812779014 | |
| 9812779019 | |
| 9789812779007 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910993973903321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |