Vai al contenuto principale della pagina

The Riesz transform of codimension smaller than one and the Wolff energy / / Benjamin Jaye [and three others]



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Jaye Benjamin <1984-> Visualizza persona
Titolo: The Riesz transform of codimension smaller than one and the Wolff energy / / Benjamin Jaye [and three others] Visualizza cluster
Pubblicazione: Providence, Rhode Island : , : American Mathematical Society, , [2020]
©2020
Descrizione fisica: 1 online resource (110 pages)
Disciplina: 515.73
Soggetto topico: Harmonic analysis
Calderón-Zygmund operator
Laplacian operator
Lipschitz spaces
Potential theory (Mathematics)
Classificazione: 42B3731B15
Persona (resp. second.): NazorovFedor (Fedya L'vovich)
RegueraMaria Carmen <1981->
TolsaXavier
Note generali: "Forthcoming, volume 266, number 1293."
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: The general scheme : finding a large Lipschitz oscillation coefficient -- Upward and downward domination -- Preliminary results regarding reflectionless measures -- The basic energy estimates -- Blow up I : The density drop -- The choice of the shell -- Blow up II : doing away with [epsilon] -- Localization around the shell -- The scheme -- Suppressed kernels -- Step I : Calderón-Zygmund theory (from a distribution to an Lp-function) -- Step II : The smoothing operation -- Step III : The variational argument -- Contradiction.
Sommario/riassunto: "Fix d [greater than or equal to] 2, and s [epsilon] (d - 1, d). We characterize the non-negative locally finite non-atomic Borel measures [mu] in Rd for which the associated s-Riesz transform is bounded in L²([mu]) in terms of the Wolff energy. This extends the range of s in which the Mateu-Prat-Verdera characterization of measures with bounded s-Riesz transform is known. As an application, we give a metric characterization of the removable sets for locally Lipschitz continuous solutions of the fractional Laplacian operator (-[delta])[infinity]/2, [infinity] [epsilon] (1, 2), in terms of a well-known capacity from non-linear potential theory. This result contrasts sharply with removability results for Lipschitz harmonic functions"--
Titolo autorizzato: The Riesz transform of codimension smaller than one and the Wolff energy  Visualizza cluster
ISBN: 1-4704-6249-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910813548203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Memoirs of the American Mathematical Society ; ; Number 1293.