Vai al contenuto principale della pagina

Application of Ambient Pressure X-Ray Photoelectron Spectroscopy to Catalysis



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Tao Franklin Visualizza persona
Titolo: Application of Ambient Pressure X-Ray Photoelectron Spectroscopy to Catalysis Visualizza cluster
Pubblicazione: Newark : , : John Wiley & Sons, Incorporated, , 2023
©2024
Edizione: 1st ed.
Descrizione fisica: 1 online resource (286 pages)
Disciplina: 543.62
Nota di contenuto: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 From Surface of Model Catalyst in UHV to Surface of Nanoparticle Catalyst During Catalysis -- References -- Chapter 2 Application of XPS: from Surface in UHV to Surface in Gas or Liquid Phase -- 2.1 Origin of X-ray Photoelectron Spectroscopy -- 2.2 Applications of XPS to Study Surface in High Vacuum -- 2.3 Applications of XPS to Study Sample in Gas Phase -- 2.4 Applications of XPS to Study Sample in Liquid Phase -- 2.4.1 XPS Studies of Surface of Nanoparticle Catalyst in Static Liquid -- 2.4.2 XPS Studies of Surface of Nanoparticle Catalyst in Flowing Liquid -- 2.4.3 XPS Study of Flowing Gas with a Pressure of 1 atm or Higher -- References -- Chapter 3 Fundamentals of X-ray Photoelectron Spectroscopy -- 3.1 Principle of XPS -- 3.2 Generation of X-ray -- 3.3 Excitation of Photoelectron and Chemical Shift -- 3.3.1 Initial State Effect -- 3.3.2 Final State Effect -- 3.3.2.1 Core Hole-Induced Polarization Final State Effect -- 3.3.2.2 Core Hole-Induced Rearrangement Final State Effect -- 3.4 Measurements of Energy of Photoelectrons -- 3.5 Measurements of Intensity of Photoelectrons -- References -- Chapter 4 Instrumentation of XPS -- 4.1 Regular X-ray Source -- 4.2 X-ray Source with a Monochromator -- 4.3 Energy Analyzer -- 4.4 Detector -- References -- Chapter 5 Significance and Challenge of Studying Surface of a Catalyst in Gaseous Phase -- 5.1 Origin of Difference between Surface in UHV and Surface in Reactant Gas -- 5.2 Intrinsic Feature of Catalytic Sites on Surface: Environmental Sensitivity -- 5.3 Ex Situ, Semi-in Situ, and In Situ/Operando Studies of Catalyst Surface at Ambient Pressure of Reactants -- 5.3.1 Difference among Ex Situ, Semi-In Situ, and In Situ/Operando Studies.
5.3.2 Example of Surface Structures Only Formed and Maintained by Reactant at a Relatively High Pressure -- 5.3.3 Example of Catalyst Structure Only Observable during Catalysis -- 5.4 Ex Situ, Semi-in Situ, and In Situ/Operando Studies of Catalyst Structure at High Pressure -- 5.5 Technical Challenges in Studying Surface of a Catalyst in Gas Phase -- References -- Chapter 6 Instrumentation of Ambient Pressure X-ray Photoelectron Spectrometer -- 6.1 X-ray Source for AP-XPS Studies -- 6.1.1 Brief of X-ray Sources -- 6.1.2 Soft X-ray for AP-XPS and Its Limitation in High Pressure Studies -- 6.1.3 Al K for AP-XPS and Its Challenge in Working at Higher Pressure -- 6.1.4 Hard X-ray for AP-XPS and its Application to High Pressure Studies -- 6.2 Reaction Cell with Capability of Flowing Gas -- 6.2.1 Necessity of Having a Reaction Cell for Performing In Situ/Operando Studies of Catalysis -- 6.2.2 Structure of Reaction Cell -- 6.2.3 Sealing of a Reaction Cell and its Engaging Mechanism -- 6.2.4 Function of a Reaction Cell for AP-XPS Studies of Catalyst -- 6.3 Differential Pumping Energy Analyzer with High Transmission -- 6.4 Mass Spectrometer with Capability of Measurement of Catalytic Performance -- References -- Chapter 7 Experimental Methods of AP-XPS Studies -- 7.1 Leak Test of Reaction Cell -- 7.2 Exclusion of Catalysis by Reaction Cell -- 7.3 Tunning and Control of Sample-Aperture Distance -- 7.4 Sample Heating and Temperature Control -- 7.5 Online Measurement of Reactants and Products -- 7.6 Spectroscopic Titration of Surface Species -- References -- Chapter 8 Difference in Data Analysis Between AP-XPS and High Vacuum XPS -- 8.1 Potential Difference in Measuring Atomic Ratio of Two Elements on Catalyst Surface -- 8.2 Difference in Intensity of Photoelectrons Collected by Energy Analyzer -- 8.3 Difference in Resolution and Baseline of Spectrum.
8.4 Difference in Spectrum between Free Molecules in Gas and Adsorbed Molecules on Surface -- 8.5 Calibration of Nominal Atomic Ratio A/Z of a Catalyst Surface in a Pure Gas -- 8.6 Calibration of Nominal Atomic Ratio A/Z of a Catalyst Surface in a Mixture of Reactants -- 8.7 Calibration of Nominal Atomic Ratio A/Z of a Catalyst Surface in a Pure Gas Obtained at Different Temperature for Fair Comparison -- References -- Chapter 9 Significance of Using AP-XPS in Studies of Catalysis -- 9.1 Fundamental of Catalyst Surface -- 9.2 Significance of Characterization of Surface of a Catalyst in Gas Phase -- 9.3 Significance of Using AP-XPS in Fundamental Studies of Catalysis -- References -- Chapter 10 CO Oxidation on Single Crystal Model Catalysts -- 10.1 Pt(557) and Pt(332) in CO -- 10.2 CO Oxidation on Pd(100), Pd(111), and Pd(110) -- 10.2.1 CO Oxidation on Pd(100) -- 10.2.2 CO Oxidation on Pd(111) -- 10.2.3 CO Oxidation on Pd(110) -- 10.3 CO Oxidation on Pt(110) and Pt(111) -- 10.3.1 CO Oxidation on Pt(110) -- 10.3.2 CO Oxidation on Pt(111) -- 10.4 CO Oxidation on Rh(110) -- 10.5 CO Oxidation on Cu(111) -- References -- Chapter 11 CO Oxidation on High Surface Area Catalysts -- 11.1 CO Oxidation on Rh Nanoparticles -- 11.2 CO Oxidation on Ru Nanoparticles -- References -- Chapter 12 Hydrogenation of Carbon Dioxide -- References -- Chapter 13 Water-Gas Shift -- 13.1 Co3O4 and Pt/Co3O4 -- 13.1.1 Gas Composition-dependent Reducibility -- 13.1.2 Active Phase of Co3O4 during Water-Gas Shift -- 13.1.3 Active Phase of 0.5 wt% Pt/Co3O4 at 150-200 °C -- 13.1.4 Active Phase of 0.5 wt% Pt/Co3O4 at 280-350 °C -- 13.1.5 Temperature-dependent Evolution of Active Phase -- 13.2 Pt,Au, Pd, and Cu Supported on CeO2 Nanorods -- 13.3 CuO−Cr2O3−Fe2O3 -- References -- Chapter 14 Complete Oxidation of Methane -- 14.1 Complete Oxidation of Methane on NiCo2O4.
14.2 Complete Oxidation of Methane on NiFe2O4 -- 14.3 Complete Oxidation of Methane on NiO with Different Surface Structures -- References -- Chapter 15 Partial Oxidation of Methanol -- 15.1 Partial Oxidation of Methanol on Pd1Zn3/ZnO -- 15.2 Partial Oxidation of Methanol on Ir1Zn3/ZnO -- References -- Chapter 16 Partial Oxidation of Methane -- 16.1 Partial Oxidation of Methane on Pd/CeO2 -- 16.2 Partial Oxidation of Methane on Pt/CeO2 -- 16.3 Partial Oxidation of Methane on Rh/CeO2 -- References -- Chapter 17 Oxidative Coupling of Methane -- 17.1 OCM on Supported Na2WO4 and Hypothesized Active Phase Na2O2 -- 17.2 First Observation of Na2O2 through AP-XPS Studies at 800 °C -- 17.3 Formation of a Thin Layer of Na2O2 Supported on Na2WO4 -- References -- Chapter 18 Dry and Steam Reforming of Methane -- 18.1 Dry Reforming of CH4 on CeO2 Anchored with Ni1 and Ru1 Sites -- 18.2 Steam Reforming of CH4 on CeO2 Anchored with Ni1 and Ru1 Single-atom Sites -- References -- Chapter 19 Reduction of NO with CO -- 19.1 Reduction of NO with CO on Co3O4 -- 19.2 Reduction of NO with CO on Rh1Co3 Clusters Supported on CoO -- References -- Chapter 20 Tuning Catalyst Surfaces for Developing Catalysts -- 20.1 Capability of Compositional Restructuring Checkable with AP-XPS -- 20.2 Tracking Restructuring of Bimetallic Surface under Reaction and Catalytic Conditions for Tuning Catalytic Performance of a Bimetallic Catalyst -- References -- Chapter 21 Photocatalysis -- References -- Index -- EULA.
Titolo autorizzato: Application of Ambient Pressure X-Ray Photoelectron Spectroscopy to Catalysis  Visualizza cluster
ISBN: 1-119-84548-3
1-119-84545-9
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910830867603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui