Vai al contenuto principale della pagina

Optically Trapped Microspheres as Sensors of Mass and Sound [[electronic resource] ] : Brownian Motion as Both Signal and Noise / / by Logan Edward Hillberry



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Hillberry Logan Edward Visualizza persona
Titolo: Optically Trapped Microspheres as Sensors of Mass and Sound [[electronic resource] ] : Brownian Motion as Both Signal and Noise / / by Logan Edward Hillberry Visualizza cluster
Pubblicazione: Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Edizione: 1st ed. 2023.
Descrizione fisica: 1 online resource (124 pages)
Disciplina: 539
530.8
Soggetto topico: Atoms
Metrology
Optics
Measurement
Measuring instruments
Acoustics
Statistical Physics
Metrology and Fundamental Constants
Light-Matter Interaction
Measurement Science and Instrumentation
Nota di contenuto: Chapter 1. Introduction -- Chapter 2. Technical Background -- Chapter 3. Experimental set-up -- Chapter 4. Results -- Chapter 5. Conclusions.
Sommario/riassunto: This thesis makes significant advances in the use of microspheres in optical traps as highly precise sensing platforms. While optically trapped microspheres have recently proven their dominance in aqueous and vacuum environments, achieving state-of-the-art measurements of miniscule forces and torques, their sensitivity to perturbations in air has remained relatively unexplored. This thesis shows that, by uniquely operating in air and measuring its thermally-fluctuating instantaneous velocity, an optically trapped microsphere is an ultra-sensitive probe of both mass and sound. The mass of the microsphere is determined with similar accuracy to competitive methods but in a fraction of the measurement time and all while maintaining thermal equilibrium, unlike alternative methods. As an acoustic transducer, the air-based microsphere is uniquely sensitive to the velocity of sound, as opposed to the pressure measured by a traditional microphone. By comparison to state-of-the-art commercially-available velocity and pressure sensors, including the world’s smallest measurement microphone, the microsphere sensing modality is shown to be both accurate and to have superior sensitivity at high frequencies. Applications for such high-frequency acoustic sensing include dosage monitoring in proton therapy for cancer and event discrimination in bubble chamber searches for dark matter. In addition to reporting these scientific results, the thesis is pedagogically organized to present the relevant history, theory, and technology in a straightforward way.
Titolo autorizzato: Optically Trapped Microspheres as Sensors of Mass and Sound  Visualizza cluster
ISBN: 3-031-44332-2
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910765483303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Springer Theses, Recognizing Outstanding Ph.D. Research, . 2190-5061