04054nam 22007215 450 991076548330332120231117164802.03-031-44332-210.1007/978-3-031-44332-9(MiAaPQ)EBC30954306(Au-PeEL)EBL30954306(DE-He213)978-3-031-44332-9(CKB)28887503000041(EXLCZ)992888750300004120231117d2023 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierOptically Trapped Microspheres as Sensors of Mass and Sound Brownian Motion as Both Signal and Noise /by Logan Edward Hillberry1st ed. 2023.Cham :Springer Nature Switzerland :Imprint: Springer,2023.1 online resource (124 pages)Springer Theses, Recognizing Outstanding Ph.D. Research,2190-5061Print version: Hillberry, Logan Edward Optically Trapped Microspheres As Sensors of Mass and Sound Cham : Springer,c2023 9783031443312 Chapter 1. Introduction -- Chapter 2. Technical Background -- Chapter 3. Experimental set-up -- Chapter 4. Results -- Chapter 5. Conclusions.This thesis makes significant advances in the use of microspheres in optical traps as highly precise sensing platforms. While optically trapped microspheres have recently proven their dominance in aqueous and vacuum environments, achieving state-of-the-art measurements of miniscule forces and torques, their sensitivity to perturbations in air has remained relatively unexplored. This thesis shows that, by uniquely operating in air and measuring its thermally-fluctuating instantaneous velocity, an optically trapped microsphere is an ultra-sensitive probe of both mass and sound. The mass of the microsphere is determined with similar accuracy to competitive methods but in a fraction of the measurement time and all while maintaining thermal equilibrium, unlike alternative methods. As an acoustic transducer, the air-based microsphere is uniquely sensitive to the velocity of sound, as opposed to the pressure measured by a traditional microphone. By comparison to state-of-the-art commercially-available velocity and pressure sensors, including the world’s smallest measurement microphone, the microsphere sensing modality is shown to be both accurate and to have superior sensitivity at high frequencies. Applications for such high-frequency acoustic sensing include dosage monitoring in proton therapy for cancer and event discrimination in bubble chamber searches for dark matter. In addition to reporting these scientific results, the thesis is pedagogically organized to present the relevant history, theory, and technology in a straightforward way.Springer Theses, Recognizing Outstanding Ph.D. Research,2190-5061AtomsMetrologyOpticsMeasurementMeasuring instrumentsAcousticsStatistical PhysicsMetrology and Fundamental ConstantsLight-Matter InteractionMeasurement Science and InstrumentationAcousticsStatistical PhysicsAtoms.Metrology.Optics.Measurement.Measuring instruments.Acoustics.Statistical Physics.Metrology and Fundamental Constants.Light-Matter Interaction.Measurement Science and Instrumentation.Acoustics.Statistical Physics.539530.8Hillberry Logan Edward1448890MiAaPQMiAaPQMiAaPQBOOK9910765483303321Optically Trapped Microspheres as Sensors of Mass and Sound3644903UNINA