Vai al contenuto principale della pagina

Voltage-gated calcium channels / / Gerald Werner Zamponi and Norbert Weiss, editors



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Voltage-gated calcium channels / / Gerald Werner Zamponi and Norbert Weiss, editors Visualizza cluster
Pubblicazione: Cham, Switzerland : , : Springer, , 2022
©2005
Descrizione fisica: 1 online resource (705 pages)
Disciplina: 572.516
Soggetto topico: Calcium channels
RNA editing
Neurosciences
Persona (resp. second.): ZamponiGerald W.
WeissNorbert
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Intro -- Preface -- Contents -- A Lived History of Early Calcium Channel Discoveries Over the Past Half-Century -- Ca2+ as Central Ion for Muscle Contraction -- The "Ca-Spikes" of Crustacean Skeletal Muscles -- "Ca-Spikes" in Heart and Neurons -- How to Look at Ca2+ Currents Through Voltage-Clamp Recordings -- Ca2+ Currents in the Heart and Mollusc Neurons: The Problem of Blocking K+ Currents -- A Convergent View on the Existence of "a" Ca2+ Channel in Excitable Cells -- The "Patch-Clamp" Technique and the Explosive Interest on Ca2+ Channels -- The Discovery of the "Low-Voltage Activated" T-Type Channel -- The Unique Properties of T-Type (LVA) Channels -- The Explosive Interest on T-Type Channels -- The Ca2+ Channel Family Growths -- The N-Type Channel -- The P/Q-Type Channel -- The R-Type Channel -- From Ionic Currents to the Molecular Structure of Ca2+ Channels -- The cAMP-Mediated Enhancement of Cardiac L-Type Channels as First Example of Ca2+ Channel Modulation -- Early Observations on the GPCR-Mediated Inhibition of Neuronal Ca2+ Channels -- Towards a Full Understanding of the GPCR-Induced Delayed Activation of HVA Channels -- Looking Deeper to the Structure and Function of Cav2 Channels Modulation by G proteins -- Take-Home Message -- References -- Part I: Structural and Molecular Aspects of VGCCs -- Subunit Architecture and Atomic Structure of Voltage-Gated Ca2+ Channels -- Introduction -- Purification and Biochemical Characterization of Skeletal Muscle Calcium Channels -- Structures of NaVAb and CaVAb Channels -- Structure of the Skeletal Muscle CaV1.1 Calcium Channel -- Molecular Properties of the CaV2 Family of Calcium Channels -- Structure of CaV2.2 Calcium Channels and Implications for Regulation -- Molecular Properties and Structure of CaV3 Calcium Channels -- Pharmacology of Calcium Channels -- Conclusion -- References.
Splicing and Editing to Fine-Tune Activity of High Voltage-Activated Calcium Channels -- Generation of mRNA Diversity by A-to-I RNA Editing and Alternative Splicing -- Splice Variations in High Voltage-Activated Calcium Channels -- CaV1.1 Splice Variant in Myotonic Dystrophy -- CaV1.2 Splice Variants in Health and Disease -- Exon 9* in Cardiovascular Diseases -- Mutually Exclusive Exons 1a/1 and Exons 8a/8 -- Exons 21/22 -- Exon 33 and Exon 33L -- CaV1.3 in Health and Disease -- The Pathophysiological Roles of CaV1.3 -- The Unique Biophysical and Pharmacological Properties of CaV1.3 Channels and Modulation -- Regulation of α1D Transcripts by Alternative Splicing and A-to-I RNA Editing -- CaV1.4 in Health and Disease -- Structure-Function Relationship Learnt from Human Mutations and Alternative Splicing Patterns -- The CaV2 Channel Family -- Pathophysiological Roles of CaV2 Channel Family -- Alternative Splicing in CaV2 Channel Family -- Exon 37 -- Exon 43/44 -- Exon 47 -- Novel Approaches to Uncover the Pathophysiological Consequences of Alternative Splicing or Gene Mutations of Ion Channels: Moving Away from Heterologous Systems -- Summary -- References -- Voltage-Gated Calcium Channel Auxiliary β Subunits -- Physiological Roles of High-Voltage-Activated Calcium Channels -- Subunits of Voltage-Gated Calcium Channels -- Physiological Roles of CaVβ Subunits -- Functional Effects of CaVβ Subunits in HVACC Complexes -- CaVβ Regulation of HVACC Membrane Trafficking -- CaVβ Regulation of HVACC Activation Gating -- CaVβ Regulation of HVACC Open Probability -- CaVβ Regulation of HVACC Inactivation Gating -- Structure-Function of CaVβ Regulation of HVACCs -- CaVβ-Interacting Proteins That Regulate HVACCs -- Regulation of HVACCs by RGK Proteins -- Roles of CaVβ and Rad in Sympathetic Regulation of Cardiac CaV1.2 -- RIM-Binding Protein Regulation of HVACCs.
Association of CaVβ Subunits with Disease -- Pharmacological Targeting of CaVβ Subunits -- References -- Regulation of Calcium Channels and Synaptic Function by Auxiliary α2δ Subunits -- Introduction -- Discovery of α2δ Subunits -- Identification of α2δ Subunits -- Cloning -- Splice Variants -- Tissue Distribution of α2δ Subunits -- α2δ-1 -- α2δ-2 -- α2δ-3 -- α2δ-4 -- Structure of α2δ Subunits -- Biochemical and Bioinformatic Studies -- GPI Anchoring -- VWA Domain -- Cache Domains -- Proteolytic Maturation of α2δ -- Cachd1 Protein -- Molecular Structure of α2δ-1 -- Functions of α2δ Subunits as Calcium Channel Subunits -- Effects of Cloned α2δ Subunits on Calcium Currents -- Effects of α2δ Subunits on Biophysical Properties of Calcium Currents -- Effects of α2δ Subunits on Calcium Channel Trafficking -- Cachd1 Function -- Synaptic Functions of α2δ Proteins Beyond Their Role as Calcium Channel Subunits -- Importance of α2δ Proteins in Neuronal and Synaptic Functions -- Postsynaptic Functions of α2δ-1 -- Presynaptic and Trans-synaptic Roles of α2δ Proteins -- Diseases Associated with α2δ Subunits -- Ducky Mice and Human Mutations of the α2δ-2 Gene -- Mutations in the α2δ-1 Gene Associated with Cardiac Phenotypes -- Neuropathic Injury and the Role of α2δ-1 -- Disorders Associated with α2δ-3 -- Disorders Associated with α2δ-4 -- Psychiatric Disorders -- Pharmacology Involving α2δ Subunits -- Therapeutic Uses of Gabapentinoids -- Gabapentinoid Drug Binding to α2δ Subunits and Potential Mechanisms of Action -- The First Double Cache Domain in α2δ-1 Has Structural Homology to a Universal Amino Acid Binding Domain -- Effect of α2δ Subunits on Ziconotide Binding -- Other Interactions of α2δ Proteins -- Summary and Outlook -- References -- Voltage-Gated Calcium Channels in Invertebrates -- Introduction: Invertebrates and Calcium Channel Discovery.
Phylogenetic Properties of the CaV Channel α1 Subunit -- Phylogenetic Properties of the CaV Channel β Subunit -- Phylogenetic Properties of the CaV Channel α2δ Subunit -- CaV Channels in Deuterostome Invertebrates -- Since Hagiwara's Discovery of LVA and HVA Ca2+ Currents in Starfish Eggs -- Tunicates and the Evolution of CaV1.1 Channels and Ryanodine Receptor Tetrad Coupling -- CaV Channels in Protostome Invertebrates -- The Atypical Nature of Calcium Channels in Parasitic Flatworms -- Functional Studies of Calcium Channels of the Pond Snail Lymnaea Stagnalis -- Genetic Studies of Ecdysozoan β and α2δ Subunits Highlight Gene Duplication as a Mechanism for Functional Diversification and the Emergence of Pleiotropic Functions -- Genetic and Functional Studies of Ecdysozoan CaV1-CaV3 Channels Reveal Deep Conservation of C-Terminal Protein Interactions and Sub-cellular Localization -- CaV Channels in Early-Diverging Animals -- Cnidaria: Our Most Distant Neural Ancestors? -- Evolutionary Insights from Functional Studies of the Placozoan CaV1 to CaV3 Channels -- A Calcium Channel Regulates Choanocyte Ciliary Beating and the Feeding Current in Sponges -- Ctenophores -- Conclusions -- References -- Untitled -- Part II: Regulation of VGCCs -- Modulation of VGCCs by G-Protein Coupled Receptors and Their Second Messengers -- Introduction -- Modulation of Cav1 Channels by GPCRs and Second Messengers -- β-Adrenergic Modulation of L-Type Channels: Activation of the Gs Signaling Pathway -- Gq-Coupled GPCR Modulation of L-Type Channels -- Gi/o-Coupled GPCR Modulation of L-Type Channels -- GPCR-Mediated Modulation of Cav1.4 in the Retina -- Modulation of Cav2 Channels by GPCRs and Second Messengers -- Mechanisms Gi/o Mediated Inhibition: Fast, Direct, Voltage-Dependent -- Cav2 Channel Interaction Sites with Gβγ Subunits.
Gβγ and Cavβ Subunit Diversity and Interaction Sites with Cav2 Channels -- Modulation of G Protein-Mediated Inhibition by Synaptic Associated and Other Proteins -- Regulation of Cav2 Channels by Lipids -- Mechanisms of Gq/11-Mediated Inhibition: Slow, Indirect, Voltage-Independent -- Conclusion for Cav2 Channels -- Modulation of Cav3 Channels by GPCRs and Second Messengers -- Direct Modulation by Gβγ Subunits -- Modulation by Kinases -- Protein Kinase A -- Protein Kinase C -- Calmodulin-Dependent Kinase II -- Protein Kinase G -- Rho-Kinase -- Tyrosine Kinase -- GPCR-Mediated Change in T-Type Channel Expression -- Conclusion for T-Type Channels -- Summary -- References -- Trafficking of Neuronal Calcium Channels -- Introduction -- Regulation of VGCCs by Ancillary Subunits -- Cavβ-Subunit -- Cavα2δ-Subunit -- Cavγ-Subunit -- Regulation of VGCCs by Other Interacting Proteins -- Calmodulin -- Collapsin Response Mediator Proteins -- Stac Adaptor Proteins -- Kelch-like 1 -- Calnexin -- Secretory Carrier-Associated Membrane Proteins -- Receptor for Activated C kinase 1 -- Regulation of VGCCs by Posttranslational Modifications -- Ubiquitination -- Glycosylation -- Subcellular Targeting of VGCCs -- Concluding Remarks and Perspectives -- References -- Calmodulin Regulation of Voltage-Gated Calcium Channels -- Introduction -- Ca2+/CaM-Dependent Regulation of VGCCs -- Ca2+/CaM-Dependent Regulation Responds Differentially to Spatially Distinct Ca2+ Sources -- Molecular Mechanism of Calmodulation -- Ca2+ Regulation of VGCCs in Disease -- References -- Cav3 Calcium Channel Interactions with Potassium Channels -- Introduction -- Cav3-Kv4 Complex -- Cav3.2-IK Complex -- Cav3.2-BK Complex -- Perspectives and Conclusions -- References -- Part III: (Patho)physiology of VGCCs -- Voltage-Gated Ca2+ Channels. Lessons from Knockout and Knock-in Mice -- Introduction -- CaV1.
CaV1.1.
Titolo autorizzato: Voltage-gated calcium channels  Visualizza cluster
ISBN: 3-031-08881-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910624309903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui