Vai al contenuto principale della pagina
Titolo: | Geometric Measure Theory and Real Analysis / / edited by Luigi Ambrosio |
Pubblicazione: | Pisa : , : Scuola Normale Superiore : , : Imprint : Edizioni della Normale, , 2014 |
Edizione: | 1st ed. 2014. |
Descrizione fisica: | 1 online resource (236 p.) |
Disciplina: | 510 |
515.42 | |
515.8 | |
Soggetto topico: | Measure theory |
Functions of real variables | |
Measure and Integration | |
Real Functions | |
Persona (resp. second.): | AmbrosioLuigi |
Note generali: | Description based upon print version of record. |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | Vladimir I. Bogachev: Sobolev classes on infinite-dimensional spaces -- Roberto Monti: Isoperimetric problem and minimal surfaces in the Heisenberg group -- Emanuele Spadaro: Regularity of higher codimension area minimizing integral currents -- Davide Vittone: The regularity problem for sub-Riemannian geodesics. |
Sommario/riassunto: | In 2013, a school on Geometric Measure Theory and Real Analysis, organized by G. Alberti, C. De Lellis and myself, took place at the Centro De Giorgi in Pisa, with lectures by V. Bogachev, R. Monti, E. Spadaro and D. Vittone. The book collects the notes of the courses. The courses provide a deep and up to date insight on challenging mathematical problems and their recent developments: infinite-dimensional analysis, minimal surfaces and isoperimetric problems in the Heisenberg group, regularity of sub-Riemannian geodesics and the regularity theory of minimal currents in any dimension and codimension. |
Titolo autorizzato: | Geometric measure theory and real analysis |
ISBN: | 88-7642-523-3 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910299966103321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |