LEADER 02829nam 22006255 450 001 9910299966103321 005 20251230061322.0 010 $a88-7642-523-3 024 7 $a10.1007/978-88-7642-523-3 035 $a(CKB)3710000000394754 035 $a(EBL)2095448 035 $a(SSID)ssj0001501490 035 $a(PQKBManifestationID)11879157 035 $a(PQKBTitleCode)TC0001501490 035 $a(PQKBWorkID)11447065 035 $a(PQKB)10663864 035 $a(MiAaPQ)EBC2095448 035 $a(DE-He213)978-88-7642-523-3 035 $z(PPN)258862432 035 $a(PPN)185486940 035 $a(MiAaPQ)EBC3109324 035 $a(EXLCZ)993710000000394754 100 $a20150409d2014 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aGeometric Measure Theory and Real Analysis /$fedited by Luigi Ambrosio 205 $a1st ed. 2014. 210 1$aPisa :$cScuola Normale Superiore :$cImprint: Edizioni della Normale,$d2014. 215 $a1 online resource (236 p.) 225 1 $aCRM Series,$x2532-3326 ;$v17 300 $aDescription based upon print version of record. 311 08$a88-7642-522-5 320 $aIncludes bibliographical references and index. 327 $aVladimir I. Bogachev: Sobolev classes on infinite-dimensional spaces -- Roberto Monti: Isoperimetric problem and minimal surfaces in the Heisenberg group -- Emanuele Spadaro: Regularity of higher codimension area minimizing integral currents -- Davide Vittone: The regularity problem for sub-Riemannian geodesics. 330 $aIn 2013, a school on Geometric Measure Theory and Real Analysis, organized by G. Alberti, C. De Lellis and myself, took place at the Centro De Giorgi in Pisa, with lectures by V. Bogachev, R. Monti, E. Spadaro and D. Vittone. The book collects the notes of the courses. The courses provide a deep and up to date insight on challenging mathematical problems and their recent developments: infinite-dimensional analysis, minimal surfaces and isoperimetric problems in the Heisenberg group, regularity of sub-Riemannian geodesics and the regularity theory of minimal currents in any dimension and codimension. 410 0$aCRM Series,$x2532-3326 ;$v17 606 $aMeasure theory 606 $aFunctions of real variables 606 $aMeasure and Integration 606 $aReal Functions 615 0$aMeasure theory. 615 0$aFunctions of real variables. 615 14$aMeasure and Integration. 615 24$aReal Functions. 676 $a510 676 $a515.42 676 $a515.8 702 $aAmbrosio$b Luigi$4edt$4http://id.loc.gov/vocabulary/relators/edt 906 $aBOOK 912 $a9910299966103321 996 $aGeometric measure theory and real analysis$91410005 997 $aUNINA