Vai al contenuto principale della pagina
| Autore: |
Morel Fabien
|
| Titolo: |
A1-Algebraic Topology over a Field [[electronic resource] /] / by Fabien Morel
|
| Pubblicazione: | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2012 |
| Edizione: | 1st ed. 2012. |
| Descrizione fisica: | 1 online resource (X, 259 p.) |
| Disciplina: | 516.35 |
| Soggetto topico: | Algebraic geometry |
| K-theory | |
| Algebraic topology | |
| Algebraic Geometry | |
| K-Theory | |
| Algebraic Topology | |
| Note generali: | Bibliographic Level Mode of Issuance: Monograph |
| Nota di bibliografia: | Includes bibliographical references (p. 255-258) and index. |
| Nota di contenuto: | 1 Introduction -- 2 Unramified sheaves and strongly A1-invariant sheaves -- 3 Unramified Milnor-Witt K-theories -- 4 Geometric versus canonical transfers -- 5 The Rost-Schmid complex of a strongly A1-invariant sheaf -- 6 A1-homotopy sheaves and A1-homology sheaves -- 7 A1-coverings -- 8 A1-homotopy and algebraic vector bundles -- 9 The affine B.G. property for the linear groups and the Grassmanian. |
| Sommario/riassunto: | This text deals with A1-homotopy theory over a base field, i.e., with the natural homotopy theory associated to the category of smooth varieties over a field in which the affine line is imposed to be contractible. It is a natural sequel to the foundational paper on A1-homotopy theory written together with V. Voevodsky. Inspired by classical results in algebraic topology, we present new techniques, new results and applications related to the properties and computations of A1-homotopy sheaves, A1-homology sheaves, and sheaves with generalized transfers, as well as to algebraic vector bundles over affine smooth varieties. |
| Titolo autorizzato: | A1-algebraic topology over a field ![]() |
| ISBN: | 3-642-29514-2 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 996466770903316 |
| Lo trovi qui: | Univ. di Salerno |
| Opac: | Controlla la disponibilità qui |