LEADER 03182nam 22006135 450 001 996466770903316 005 20200703145004.0 010 $a3-642-29514-2 024 7 $a10.1007/978-3-642-29514-0 035 $a(CKB)3400000000085870 035 $a(SSID)ssj0000745792 035 $a(PQKBManifestationID)11412846 035 $a(PQKBTitleCode)TC0000745792 035 $a(PQKBWorkID)10852520 035 $a(PQKB)10320781 035 $a(DE-He213)978-3-642-29514-0 035 $a(MiAaPQ)EBC3070573 035 $a(PPN)165104368 035 $a(EXLCZ)993400000000085870 100 $a20120712d2012 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aA1-Algebraic Topology over a Field$b[electronic resource] /$fby Fabien Morel 205 $a1st ed. 2012. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2012. 215 $a1 online resource (X, 259 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2052 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-642-29513-4 320 $aIncludes bibliographical references (p. 255-258) and index. 327 $a1 Introduction -- 2 Unramified sheaves and strongly A1-invariant sheaves -- 3 Unramified Milnor-Witt K-theories -- 4 Geometric versus canonical transfers -- 5 The Rost-Schmid complex of a strongly A1-invariant sheaf -- 6 A1-homotopy sheaves and A1-homology sheaves -- 7 A1-coverings -- 8 A1-homotopy and algebraic vector bundles -- 9 The affine B.G. property for the linear groups and the Grassmanian. 330 $aThis text deals with A1-homotopy theory over a base field, i.e., with the natural homotopy theory associated to the category of smooth varieties over a field in which the affine line is imposed to be contractible. It is a natural sequel to the foundational paper on A1-homotopy theory written together with V. Voevodsky. Inspired by classical results in algebraic topology, we present new techniques, new results and applications related to the properties and computations of A1-homotopy sheaves, A1-homology sheaves, and sheaves with generalized transfers, as well as to algebraic vector bundles over affine smooth varieties. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v2052 606 $aAlgebraic geometry 606 $aK-theory 606 $aAlgebraic topology 606 $aAlgebraic Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M11019 606 $aK-Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M11086 606 $aAlgebraic Topology$3https://scigraph.springernature.com/ontologies/product-market-codes/M28019 615 0$aAlgebraic geometry. 615 0$aK-theory. 615 0$aAlgebraic topology. 615 14$aAlgebraic Geometry. 615 24$aK-Theory. 615 24$aAlgebraic Topology. 676 $a516.35 700 $aMorel$b Fabien$4aut$4http://id.loc.gov/vocabulary/relators/aut$0477681 906 $aBOOK 912 $a996466770903316 996 $aA1-algebraic topology over a field$9241165 997 $aUNISA