Vai al contenuto principale della pagina

Multivariate generalized linear mixed models using R / / Damon M. Berridge, Robert Crouchley



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Berridge Damon M. Visualizza persona
Titolo: Multivariate generalized linear mixed models using R / / Damon M. Berridge, Robert Crouchley Visualizza cluster
Pubblicazione: Boca Raton, Fla., : CRC Press, c2011
Boca Raton, Fla. : , : CRC Press, , 2011
Edizione: 1st ed.
Descrizione fisica: 1 online resource (284 p.)
Disciplina: 003/.35133
Soggetto topico: R (Computer program language)
Social sciences - Research - Mathematical models
Social sciences - Research - Statistical methods
Social sciences - Research - Data processing
Multivariate analysis
Altri autori: CrouchleyRobert  
Note generali: A Chapman & Hall book.
Nota di bibliografia: Includes bibliographical references and indexes.
Nota di contenuto: Front Cover; Contents; List of Figures; List of Tables; List of Applications; List of Datasets; Preface; Acknowledgments; 1. Introduction; 2.Generalized linear models for continuous/interval scale data; 3. Generalized linear models for other types of data; 4. Family of generalized linear models; 5. Mixed models for continuous/interval scale data; 6. Mixed models for binary data; 7. Mixed models for ordinal data; 8. Mixed models for count data; 9. Family of two-level generalized linear models; 10. Three-level generalized linear models; 11. Models for multivariate data
12. Models for duration and event history data13. Stayers, non-susceptibles and endpoints; 14. Handling initial conditions/state dependence in binary data; 15. Incidental parameters: an empirical comparison of fixed effects and random effects models; A. SabreR installation, SabreR commands, quadrature, estimation, endogenous effects; B. Introduction to R for Sabre; References
Sommario/riassunto: To provide researchers with the ability to analyze large and complex data sets using robust models, this book presents a unified framework for a broad class of models that can be applied using a dedicated R package (Sabre). The first five chapters cover the analysis of multilevel models using univariate generalized linear mixed models (GLMMs). The next few chapters extend to multivariate GLMMs and the last chapters address more specialized topics, such as parallel computing for large-scale analyses. Each chapter includes many real-world examples implemented using Sabre as well as exercises and
Titolo autorizzato: Multivariate generalized linear mixed models using R  Visualizza cluster
ISBN: 0-429-19160-X
1-4987-4070-7
1-4398-1327-2
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910812458003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui